Инд. авторы: Ivanov A.V., Mukasa S.B., Kamenetsky V.S, Ackerson M., Demonterova E.I., Pokrovsky B.G., Vladykin N.V., Kolesnichenko M.V., Litasov K.D., Zedgenizov D.A.
Заглавие: Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps Large Igneous Province: Evidence for flux-related high-Ti, high-Mg magmatism
Библ. ссылка: Ivanov A.V., Mukasa S.B., Kamenetsky V.S, Ackerson M., Demonterova E.I., Pokrovsky B.G., Vladykin N.V., Kolesnichenko M.V., Litasov K.D., Zedgenizov D.A. Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps Large Igneous Province: Evidence for flux-related high-Ti, high-Mg magmatism // Chemical Geology. - 2018. - Vol.483. - P.442-462. - ISSN 0009-2541. - EISSN 1878-5999.
Идентиф-ры: DOI: 10.1016/j.chemgeo.2018.03.011; РИНЦ: 35521765; SCOPUS: 2-s2.0-85043536479; WoS: 000429492300037;
Реферат: eng: The origin of high-Mg melts remains one of the most highly debated questions in igneous petrology. There are two contrasting points of view, namely, (1) melt initiation in a rising high-temperature plume, and (2) mantle melting due to fluxing by water. To address this question we determined H2O, CO2, F, Cl and S concentrations in olivine-hosted melt inclusions of high-Mg volcanic rocks of the Siberian Traps Large Igneous Province that bracket the main pulse of volcanism at about 252-250Ma, and can be classified as melanephelinites and meimechites. Both rock types belong to the high-Ti rock series. Correcting measured H2O, CO2, F, Cl and S concentrations in homogenized primary meimechite melt inclusions to primary meimechite melt composition using experimental melt compositions resulted in corrected melt-inclusion, volatile compositions of similar to 3.88 wt% H2O, similar to 1477 ppm CO2, similar to 4214 ppm F, similar to 2.08 wt% Cl and similar to 2490 ppm S. These values are viewed as minimum estimates for the original volatile concentrations in the melt because of the high probability for degassing during melt crystallization and/or during experiment homogenization. Olivine-hosted homogenized melt inclusions from melanephelinites yielded lower corrected concentrations of similar to 1.06?wt% H2O, similar to 998 ppm CO2, similar to 3242 ppm F, similar to 607 ppm Cl and similar to 2131 ppm S. We also measured water concentrations in clinopyroxenes of melanephelinites by FTIR, obtaining values as high as 133 ppm H2O, which corresponds to 0.91 wt% in the melt, in general agreement with data obtained by SIMS on the olivine-hosted melt inclusions. Olivine grains from melanephelinites are characterized by evolved compositions (Fo 0.80-0.86). Extrapolation to a primitive melanephelinite melt by simple fractional crystallization suggests that it could also contain high H2O concentrations (up to similar to 3 wt%). Analyzed meimechite and melanephelinite whole-rock samples are characterized by trace-element patterns that are typical of mantle-derived melts and by Sr-Nd isotope ratios that exclude crustal contamination or derivation from ancient lithospheric mantle. Thus, high volatile concentrations can be attributed to sublithospheric mantle source regions. This supports the notion that high-Mg melts form by volatile fluxing of the asthenospheric mantle rather than by decompression melting under relatively dry conditions of a rising abnormally high-temperature mantle plume.
Ключевые слова: ORIGIN; POLAR SIBERIA; MANTLE SOURCES; TRACE-ELEMENTS; RAPID ERUPTION; EXTRACTION CHROMATOGRAPHY; PERMO-TRIASSIC BOUNDARY; CONTINENTAL FLOOD BASALTS; Melt inclusion; Olivine; Melanephelinite; Meimechite; Siberian Traps; VOLCANIC-ROCKS; NORILSK;
Издано: 2018
Физ. хар-ка: с.442-462
Цитирование: 1. Arndt, N., Komatiites, kimberlites, and boninites. J. Geophys. Res., 108(B6), 2003, 2293, 10.1029/2002JB002157.
2. Arndt, N., Lehnert, K., Vasil'ev, Y., Meimechites: highly magnesian lithosphere-contaminated alkaline magmas from deep subcontinental mantle. Lithos 34 (1995), 41–59, 10.1016/0024-4937(95)90009-8.
3. Arndt, N., Chauvel, C., Czamanske, G., Fedorenko, V., Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contrib. Mineral. Petrol. 133 (1998), 297–313, 10.1007/s004100050453.
4. Arndt, N.T., Ginibre, C., Chauvel, C., Albarede, F., Cheadle, M., Herzberg, C., Jenner, G., Lahaye, Y., Were komatiites wet?. Geology 26 (1998), 739–742, 10.1130/0091-7613(1998)026<0739:WKW>2.3.CO;2.
5. Arndt, N.T., Czamanske, G.K., Walker, R.J., Chauvel, C., Fedorenko, V.A., Geochemistry and origin of the intrusive hosts of the Noril'sk-Talnakh Cu-Ni-PGE sulfide deposits. Econ. Geol. 98 (2003), 495–515.
6. Baragar, W.R.A., Mader, U., LeCheminant, G.M., Paleoproterozoic carbonatitic ultrabasic volcanic rocks (meimechites?) of Cape Smith Belt, Quebec. Can. J. Earth Sci. 38 (2001), 1313–1334, 10.1139/e01-024.
7. Basu, A.R., Poreda, R.J., Renne, P.R., Teichmann, F., Vasiliev, Yu.R., Sobolev, N.V., Turrin, B.D., High-3He plume origin and temporal–spatial evolution of the Siberian flood basalts. Science 269 (1995), 822–825, 10.1126/science.269.5225.822.
8. Bell, D.R., Ihinger, P.D., Rossman, G.R., Quantitative analysis of trace OH in garnet and pyroxenes. Am. Mineral. 80 (1995), 465–474.
9. Bell, D.R., Rossman, G.R., Maldener, J., Endisch, D., Rauch, F., Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res., 108(B2), 2003, 2105, 10.1029/2001JB000679.
10. Black, B.A., Elkins-Tanton, L.T., Rowe, M.C., Ukstins Peate, I., Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet. Sci. Lett. 317–318 (2012), 363–373, 10.1016/j.epsl.2011.12.001.
11. Boyd, F.R., England, J.L., Apparatus for phase equilibrium measurements at pressures up to 50 kbar and temperatures up to 1750 °C. J. Geophys. Res. 65 (1960), 741–748.
12. Brey, G.P., Bulatov, V.K., Girnis, A.V., Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. Lithos 112 (2009), 249–259, 10.1016/j.lithos.2009.04.037.
13. Bryan, S., Ernst, R., Revised definition of large igneous provinces (LIPs). Earth Sci. Rev. 86 (2008), 175–202, 10.1016/j.earscirev.2007.08.008.
14. Burgess, S.D., Bowring, S.A., High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction. Sci. Adv., 1, 2015, e1500470, 10.1126/sciadv.1500470.
15. Cabato, J.A., Stefano, C.J., Mukasa, S.B., Volatile concentrations in olivine-hosted melt inclusions from the Columbia River flood basalts and associated lavas of Oregon Plateau: implications for magma genesis. Chem. Geol. 392 (2015), 59–73, 10.1016/j.chemgeo.2014.11.015.
16. Carlson, R.W., Czamanske, G., Fedorenko, V., Ilupin, I., A comparison of Siberian meimechites and kimberlites: implications for the source of high-Mg alkalic magmas and flood basalts. Geochem. Geophys. Geosyst., 7, 2006, Q11014, 10.1029/2006GC001342.
17. Cox, K.G., Flood basalts, subduction and the break-up of Gondwanaland. Nature 274 (1978), 47–49, 10.1038/274047a0.
18. Danyushevsky, L.V., Sobolev, A.V., Falloon, T.J., North Tongan high-Ca boninite petrogenesis: the role of Samoan plume and subduction zone–transform fault transition. J. Geodyn. 20 (1995), 219–241, 10.1016/0264-3707(95)00013-Y.
19. Dasgupta, R., Hirschmann, M.M., Smith, N.D., Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48 (2007), 2093–2124, 10.1093/petrology/egm053.
20. Domeier, M., Torsvik, T.H., Plate tectonics in the late Paleozoic. Geosci. Front. 5 (2014), 303–350, 10.1016/j.gsf.2014.01.002.
21. Doucet, L.S., Ionov, D.A., Golovin, A.V., The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Mineral. Petrol. 165 (2013), 1225–1242, 10.1007/s00410-013-0855-8.
22. Elkins-Tanton, L.T., Draper, D.S., Agee, C.B., Jewell, J., Thorpe, A., Hess, P.C., The last lavas erupted during the main phase of the Siberia flood volcanic province: results from experimental petrology. Contrib. Mineral. Petrol. 153 (2007), 191–209, 10.1007/s00410-006-0140-1.
23. Fedorenko, V.A., Czamanske, G.K., Results of new field and geochemical studies of the volcanic and intrusive rocks of the Maymecha-Kotuy area, Siberian flood-basalt province, Russia. Int. Geol. Rev. 39 (1997), 479–531, 10.1080/00206819709465286.
24. Fedorenko, V.I., Lightfoot, P.C., Naldrett, A.J., Czamanske, G.K., Hawkesworth, C.J., Wooden, J.L., Ebel, D.S., Petrogenesis of the floodbasalt sequence at Noril'sk, North Central Siberia. Int. Geol. Rev. 38 (1996), 99–135, 10.1080/00206819709465327.
25. Fetisova, A.M., Veselovskii, R.V., Latyshev, A.V., Rad'ko, V.A., Pavlov, V.E., Magnetic stratigraphy of the Permian–Triassic Traps in the Kotui River Valley (Siberian Platform): new paleomagnetic data. Stratigr. Geol. Correl. 22 (2014), 377–390, 10.1134/S0869593814040054.
26. Fiorentini, M.L., Beresford, S.W., Deloule, E., Hanski, E., Stone, W.E., Pearson, N.J., The role of mantle-derived volatiles in the petrogenesis of Palaeoproterozoic ferropicrites in the Pechenga Greenstone Belt, northwestern Russia: insights from in-situ microbeam and nanobeam analysis of hydromagmatic amphibole. Earth Planet. Sci. Lett. 268 (2008), 2–14, 10.1016/j.epsl.2007.12.018.
27. Foley, S.F., The genesis of continental alkaline magmas – an interpretation in terms of redox melting. J. Petrol. Spec. Lithosphere Issue, 1988, 139–161.
28. Foley, S.F., A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Petrol. 52 (2011), 1363–1391, 10.1093/petrology/egq061.
29. Gaetani, G.A., O'Leary, J.A., Shimizu, N., Bucholz, C.E., Newville, M., Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40 (2012), 915–918, 10.1130/G32992.1.
30. Gallagher, K.G., Hawkesworth, C., Dehydration melting and the generation of continental flood basalts. Nature 358 (1992), 57–59, 10.1038/358057a0.
31. Gladkochub, D.P., Donskaya, T.V., Ivanov, A.V., Ernst, R., Mazukabzov, A.M., Pisarevsky, S.A., Ukhova, N.A., Phanerozoic mafic magmatism in the southern Siberian craton: geodynamic implication. Russ. Geol. Geophys. 51 (2010), 952–964, 10.1016/j.rgg.2010.08.005.
32. Gudfinnsson, G.H., Presnal, D.C., Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J. Petrol. 46 (2005), 1645–1659, 10.1093/petrology/egi029.
33. Gurenko, A.A., Kamenetsky, V.S., Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: new evidence supporting wet komatiite origin. Earth Planet. Sci. Lett. 312 (2011), 201–212, 10.1016/j.epsl.2011.09.033.
34. Hartley, M.E., Neave, D.A., Maclennan, J., Edmonds, M., Thordarson, T., Diffusion over-hydration of olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 425 (2015), 168–178, 10.1016/j.epsl.2015.06.008.
35. Hawkesworth, C.J., Lightfoot, P.C., Fedorenko, V.A., Blake, S., Naldrett, A.J., Doherty, W., Gorbachev, N.S., Magma differentiation and mineralisation in the Siberian flood basalts. Lithos 34 (1995), 61–88, 10.1016/0024-4937(95)90011-X.
36. Heinonen, J.S., Luttinen, A.V., Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: geochemical tracing of ferropicrite sources. Lithos 105 (2008), 347–364, 10.1016/j.lithos.2008.05.010.
37. Ivanov, A.V., Evaluation of different models for the origin of the Siberian Traps. Foulger, G.R., Jurdy, D.M., (eds.) Plates, Plumes, and Planetary Processes: Geological Society of America Special Paper, vol. 430, 2007, 669–689, 10.1130/2007.2430(31).
38. Ivanov, A.V., Why volatiles are required for cratonic flood basalt volcanism: two examples from the Siberian Craton. Foulger, G.R., Lustrino, M., King, S., (eds.) The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson, GSA Special Paper, v. 514 and AGU Special Publication, vol. 71, 2015, 325–338, 10.1130/2015.2514(19).
39. Ivanov, A.V., Balyshev, S.O., Mass flux across the lower-upper mantle boundary: vigorous, absent, or limited?. Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L., (eds.) Plates, Plumes, and Paradigms: Geological Society of America Special Paper, vol. 388, 2005, 327–346, 10.1130/2005.2388(20).
40. Ivanov, A.V., Litasov, K.D., The deep water cycle and flood basalt volcanism. Int. Geol. Rev. 56 (2014), 1–14, 10.1080/00206814.2013.817567.
41. Ivanov, A.V., Demonterova, E.I., Rasskazov, S.V., Yasnygina, T.A., Low-Ti melts from the southeastern Siberian Traps Large Igneous Province: evidence for a water-rich mantle source?. J. Earth Syst. Sci. 117 (2008), 1–21, 10.1007/s12040-008-0008-z.
42. Ivanov, A.V., He, H., Yan, L., Ryabov, V.V., Shevko, A.Y., Palesskii, S.V., Nikolaeva, I.V., Siberian Traps Large Igneous Province: evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth Sci. Rev. 122 (2013), 58–76, 10.1016/j.earscirev.2013.04.001.
43. Ivanov, A.V., Meffre, S., Thompson, J., Corfu, F., Kamenetsky, V.S., Kamenetsky, M.B., Demonterova, E.I., Timing and genesis of the Karoo-Ferrar large igneous province: new high-precision U-Pb data confirm short duration of the major magmatic pulse. Chem. Geol., 2017, 10.1016/j.chemgeo.2016.10.008.
44. Ivanov, A.V., Demonterova, E.I., Savatenkov, V.M., Perepelov, A.B., Ryabov, V.V., Shevko, A.Y., Late Triassic (Carnian) lamproites from Noril'sk, polar Siberia: evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian Craton. Lithos 296–299 (2018), 67–78, 10.1016/j.lithos.2017.10.021.
45. Jiang, C.Y., Zhang, P.B., Lu, D.R., Bai, K.Y., Petrogenesis and magma source of the ultramafic rocks at Wajilitag region, western Tariam plate in Xinjiang. Acta Petrol. Sin. 20 (2004), 1433–1444.
46. Kamenetsky, V.S., Eggins, S.M., Systematics of metals, metalloids, and volatiles in MORB melts: effects of partial melting, crystal fractionation and degassing (a case study of Macquarie Island glasses). Chem. Geol. 302–303 (2012), 76–86, 10.1016/j.chemgeo.2011.04.008.
47. Kamenetsky, V.S., Eggins, S.M., Crawford, A.J., Green, D.H., Gasparon, M., Falloon, T.J., Calcic melt inclusions in primitive olivine at 43°N MAR: evidence for melt-rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth Planet. Sci. Lett. 160 (1998), 115–132, 10.1016/S0012-821X(98)00090-9.
48. Kamenetsky, V.S., Park, J.-W., Mungall, J.E., Pushkarev, E.V., Ivanov, A.V., Kamenetsky, M.B., Yaxley, G.M., Crystallization of platinum-group minerals from silicate melts: evidence from Cr-spinel-hosted inclusions in volcanic rocks. Geology 43 (2015), 903–906, 10.1130/G37052.1.
49. Kamo, S.L., Czamanske, G.K., Krogh, T.E., A minimum U–Pb age for Siberian flood-basalt volcanism. Geochim. Cosmochim. Acta 60 (1996), 3505–3511, 10.1016/0016-7037(96)00173-1.
50. Kamo, S.L., Czamanske, G.K., Amelin, Yu., Fedorenko, V.A., Davis, D.W., Trofimov, V.R., Rapid eruption of Siberian flood volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth Planet. Sci. Lett. 214 (2003), 75–92, 10.1016/S0012-821X(03)00347-9.
51. Kogarko, L.N., Ryabchikov, I.D., Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia. J. Asian Earth Sci. 18 (2000), 195–203, 10.1016/S1367-9120(99)00041-3.
52. Komabayashi, T., Phase relations of hydrous peridotite: implications for water circulation in the Earth's mantle. Jacobsen, S.D., Van der Lee, S., (eds.) Earth's Deep Water Cycle: American Geophysical Union Geophysical Monograph, vol. 168, 2006, 29–43, 10.1029/168GM04.
53. Krivolutskaya, N.A., Siberian Traps and Pt–Cu–Ni deposits in the Noril'sk area. Spring, 2016, 10.1007/978-3-319-17205-7.
54. Latyshev, A.V., Veselovskiy, R.V., Ivanov, A.V., Paleomagnetism of the Permian-Triassic intrusions from the Tunguska syncline and the Angara-Taseeva depression, Siberian Traps Large Igneous Province: evidence of contrasting styles of magmatism. Tectonophysics 723 (2018), 41–55, 10.1016/j.tecto.2017.11.035.
55. Lavrent'ev, Y.G., Korolyuk, V.N., Usova, L.V., Nigmatulina, E.N., Electron probemicroanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ. Geol. Geophys. 56 (2015), 1428–1436, 10.1016/j.rgg.2015.09.005.
56. Le Bas, M.J., IUGS recalculation of the high-Mg and picritic volcanic rocks. J. Petrol. 41 (2000), 1467–1470, 10.1093/petrology/41.10.1467.
57. Le Bas, M.J., Streckeisen, A.L., The UIGS systematics of igneous rocks. J. Geol. Soc. 148 (1991), 825–833, 10.1144/gsjgs.148.5.0825.
58. Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., Naldrett, A.J., Gorbachev, N.S., Fedorenko, V.A., Doherty, W., Remobilisation of the continental lithosphere by a mantle plume: Major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeitic lavas of the Noril'sk District, Siberian Trap, Russia. Contrib. Mineral. Petrol. 114 (1993), 171–188, 10.1007/BF00307754.
59. Litasov, K.D., Shatskiy, A., Ohtani, E., Melting and subsolidus phase relations in peridotite and eclogite systems with reduced C–O–H fluid at 3–16 GPa. Earth Planet. Sci. Lett. 391 (2014), 87–99.
60. Masaitis, V.L., Permian and Triassic volcanism of Siberia. Zap. Vses. Mineral. O-va. 4 (1983), 412–425 (in Russian).
61. McDonough, W.F., Sun, S.-S., The composition of the earth. Chem. Geol. 120 (1995), 223–253, 10.1016/0009-2541(94)00140-4.
62. Medard, E., Grove, T.L., The effect of H2O on the liquidus of basaltic melts: experiments and thermodynamic models. Contrib. Mineral. Petrol. 155 (2008), 417–432, 10.1007/s00410-007-0250-4.
63. Medvedev, A.Y., Al'mukhamedov, A.I., Kirda, N.P., Geochemistry of Permo-Triassic volcanic rocks of West Siberia. Geologiya i Geofi zika 44 (2003), 86–100 (in Russian).
64. Mitchell, A.L., Grove, T.L., Melting the hydrous, subarc mantle: the origin of primitive andesites. Contrib. Mineral. Petrol., 170, 2015, 13, 10.1007/s00410-015-1161-4.
65. Naldrett, A.J., Lightfoot, P.C., Fedorenko, V.A., Doherty, W., Gorbachev, N.S., Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implications for the origin of the Ni-Cu ores. Econ. Geol. 87 (1992), 975–1004, 10.2113/gsecongeo.87.4.975.
66. Newman, S., Lowenstern, J.B., VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput. Geosci. 28 (2002), 597–604, 10.1016/S0098-3004(01)00081-4.
67. Nikishin, A.M., Ziegler, P.A., Abbott, D., Brunet, M.-F., Cloetingh, S., Permo-Triassic intraplate magmatism and rifting in Eurasia: implications for mantle plumes and mantle dynamics. Tectonophysics 351 (2002), 3–39, 10.1016/S0040-1951(02)00123-3.
68. O'Leary, J.A., Gaetani, G.A., Hauri, E.H., The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet. Sci. Lett. 297 (2010), 111–120, 10.1016/j.epsl.2010.06.011.
69. Panina, L.I., Motorina, I.V., Meimechites, porphyritic alkaline picrites, and melanephelinites, of Siberia: conditions of crystallization, parental magmas, and sources. Geochem. Int. 51 (2013), 109–128, 10.1134/S0016702913020080.
70. Panina, L.I., Usoltseva, L.M., Alkaline-ultrabasic mantle-derived magmas, their sources, and crystallization features: data of melt inclusion studies. Lithos 103 (2008), 431–444, 10.1016/j.lithos.2007.10.009.
71. Panteeva, S.V., Gladkochoub, D.P., Donskaya, T.V., Markova, V.V., Sandimirova, G.P., Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion. Spectrochim. Acta B At. Spectrosc. 58 (2003), 341–350, 10.1016/S0584-8547(02)00151-9.
72. Parman, S.W., Grove, T.L., Komatiites in plume debate. Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L., (eds.) Plates, Plumes, and Paradigms: Geological Society of America Special Paper, vol. 388, 2005, 249–256, 10.1130/0-8137-2388-4.249.
73. Pavlov, V.E., Fluteau, F., Veselovskiy, R.V., Fetisova, A.M., Latyshev, A.V., Secular geomagnetic variations and volcanic pulses in the Permian–Triassic Traps of the Norilsk and Maimecha–Kotui provinces. Izv. Phys. Solid Earth 47 (2011), 402–417, 10.1134/S1069351311040070.
74. Pavlov, V., Fluteau, F., Veselovskiy, R., Fetisova, A., Latyshev, A., Elkins-Tanton, L.T., Sobolev, A.V., Krivolutskaya, N.A., Volcanic pulses in the Siberian Traps as inferred from Permo-Triassic geomagnetic secular variations. Volcanism and Global Environmental Change, 2015, Cambridge University Press, 63–78, 10.1017/CBO9781107415683.007.
75. Pin, C., Santos Zalduegui, J.F., Sequential separation of light-rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339 (1997), 79–89, 10.1016/S0003-2670(96)00499-0.
76. Pin, C., Briot, D., Bassin, C., Poitrasson, F., Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal. Chim. Acta 298 (1994), 209–217, 10.1016/0003-2670(94)00274-6.
77. Ponomarev, A.I., Methods for chemical analyses of minerals and rocks. Iron Ores, Ti-Magnetites and Chromites, vol. 2, 1966, The USSR Academy of Sciences publisher, Moscow.
78. Puffer, J.H., Contrasting high field strength element contents of continental flood basalts from plume versus reactivated-arc sources. Geology 29 (2001), 675–678, 10.1130/0091-7613(2001)029<0675:CHFSEC>2.0.CO;2.
79. Qin, Z.W., Lu, F.Q., Anderson, A.T., Diffusive reequilibration of melt and fluid inclusions. Am. Mineral. 77 (1992), 565–576.
80. Reichow, M.K., Saunders, A.D., White, R.V., Pringle, M.S., Al'mukhamedov, A.I., Medvedev, A.I., Kirda, N.P., 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled. Science 296:p (2002), 1846–1849, 10.1126/science.1071671.
81. Reichow, M.K., Saunders, A.D., White, R.V., Al'mukhamedov, A.I., Medvedev, A.Ya., Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo-Triassic Traps, Russia. Lithos 79:p (2005), 425–452, 10.1016/j.lithos.2004.09.011.
82. Reichow, M.K., Pringle, M.S., Al'Mukhamedov, A.I., Allen, M.B., Andreichev, V.L., Buslov, M.M., Davies, C.E., Fedoseev, G.S., Fitton, J.G., Inger, S., Medvedev, A.Y., Mitchell, C., Puchkov, V.N., Safonova, I.Y., Scott, R.A., Saunders, A.D., The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277 (2009), 9–20, 10.1016/j.epsl.2008.09.030.
83. Renne, P.R., Basu, A.R., Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science 253 (1991), 176–179, 10.1007/s11434-008-0543-7.
84. Rosen, O.M., Condie, K.C., Natapov, L.M., Nozhkin, A.D., Archean and early Proterozoic evolution of the Siberian craton: a preliminary assessment. Condie, K.S., (eds.) Archean Crustal Evolution, 1994, Elsevier, Amsterdam, 411–459, 10.1016/S0166-6462635(08)70228-7.
85. Ryabchikov, I.D., Ntaflos, Th., Büchl, A., Solovova, I.P., Subalkaline picrobasalts and plateau basalts from Putorana Plateau (Siberian CFB province). 1. Mineral compositions and geochemistry of major and trace elements. Geochem. Int. 39 (2001), 415–431.
86. Ryabov, V.V., Shevko, A.Y., Gora, M.P., Trap magmatism and ore formation in Siberian Noril'sk region. Trapp Petrology, vol. 1, 2013, Springer, 10.1007/978-94-007-5022-7.
87. Safonova, I., Maruyama, S., Asia: a frontier for a future supercontinent Amasia. Int. Geol. Rev. 56 (2014), 1051–1071, 10.1080/00206814.2014.915586.
88. Safonova, I., Maruyama, S., Litasov, K., Generation of hydrous-carbonated plumes in the mantle transition zone linked to tectonic erosion and subduction. Tectonophysics 662 (2015), 454–471, 10.1016/j.tecto.2015.08.005.
89. Shimizu, K., Shimizu, N., Komiya, T., Suzuki, K., Maruyama, S., Tatsumi, Y., CO2–rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island, Colombia. Earth Planet. Sci. Lett. 288 (2009), 33–43, 10.1016/j.epsl.2009.09.005.
90. Sibik, S., Edmonds, M., Maclennan, J., Svensev, H., Magmas erupted during the main pulse of Siberian Traps volcanism were volatile-poor. J. Petrol. 56 (2015), 2089–2116, 10.1093/petrology/egv064.
91. Smelov, A.P., Timofeev, V.F., The age of the North Asian Cratonic basement: an overview. Gondwana Res. 12 (2007), 279–288, 10.1016/j.gr.2006.10.017.
92. Smith, A.D., Back-arc convection model for Columbia River basalt genesis. Tectonophysics 207 (1992), 269–285, 10.1016/0040-1951(92)90390-R.
93. Sobolev, A.V., Kamenetsky, V.S., Kononkova, N.N., New data on petrology of Siberian meimechites. Geokhimiya 8 (1991), 1084–1095.
94. Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., Nikogosian, I.K., An olivine-free mantle source for Hawaiian shield basalts. Nature 434 (2005), 590–597, 10.1038/nature03411.
95. Sobolev, A.V., Kuzmin, D.V., Krivolutskaya, N.A., Petrology of the parental melts and mantle sources of Siberian Trap magmatism. Petrology 17 (2009), 253–286, 10.1134/S0869591109030047.
96. Sobolev, A.V., Sobolev, S.V., Kuzmin, D.V., Malitch, K.N., Petrunin, A.G., Siberian meimechites: origin and relation to flood basalts and kimberlites. Russ. Geol. Geophys. 50 (2009), 999–1033, 10.1016/j.rgg.200.
97. Sobolev, A.V., Asafov, E.V., Gurenko, A.A., Arndt, N.T., Batanova, V.G., Portnyagin, M.V., Garbe-Schonberg, D., Krasheninnikov, S.P., Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531 (2016), 628–632, 10.1038/nature17152.
98. Sokol, A., Tomilenko, A.A., Bul'bak, T.A., Palyanova, G.A., Sokol, I.A., Palyanov, Y.N., Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100-1400 degrees C. Sci. Rep., 7, 2017, 706, 10.1038/s41598-017-00679-7.
99. Spilliaert, N., Allard, P., Metrich, N., Sobolev, A.V., Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J. Geophys. Res., 111, 2006, B04203, 10.1029/2005JB003934.
100. Stefano, C.J., Mukasa, S.B., Andronikov, A., Leeman, W.P., Water and volatile systematics of olivine-hosted melt inclusions from the Yellowstone hotspot track. Contrib. Mineral. Petrol. 161 (2011), 615–633, 10.1007/s00410-010-0553-8.
101. Stracke, A., Hofmann, A.W., Hart, S.R., FOZO, HIMU, and the rest of the mantle zoo. Geochem. Geophys. Geosyst., 6, 2005, Q05007.
102. Taylor, W.R., Green, D.H., The role of reduced C–O–H fluids in mantle partial melting. Jaques, A.L., (eds.) Kimberlites and Related Rocks. Volume 1. Their Composition, Occurrence, Origin and Emplacement Proceedings of the Fourth International Kimberlite Conference: Geological Society of Australia Special Publication, vol. 14, 1986, 592–602.
103. Taylor, W.R., Green, D.H., The petrogenetic role of methane: effect of liquidus phase relations and the solubility mechanism of reduced C-H volatiles. Mysen, B.O., (eds.) Magmatic Processes: Physicochemical Principles The Geological Society (London), Special Publication, vol. 1, 1987, 121–138.
104. Wang, X.-C., Wilde, S.A., Pang, C.-J., Origin of arc-like continental basalts: implications for deep-Earth fluid cycling and tectonic discrimination. Lithos, 2016, 10.1016/j.lithos.2015.12.014.
105. Weiss, Y., McNeill, J., Pearson, D.G., Nowell, G.M., Ottley, C.J., Higly saline fluids from a subducting slab as a source for fluid-rich diamonds. Nature 524 (2015), 339–342, 10.1038/nature14857.
106. Wooden, J.L., Czamanske, G.K., Fedorenko, V.A., Arndt, N.T., Chauvel, C., Bouse, R.M., King, B.-S.W., Knight, R.J., Siems, D.F., Isotopic and trace-element constraints on mantle and crustal contributions to characterization of Siberian continental flood basalts, Noril'sk area, Siberia. Geochim. Cosmochim. Acta 57 (1993), 3677–3704.
107. Xia, Q.-K., Bi, Y., Li, P., Tian, W., Wei, X., Chen, H.-L., High water content in primitive continental flood basalts. Sci. Rep., 6, 2016, 25416, 10.1038/srep25416.
108. Yasuda, A., Fujii, T., Ascending subducted oceanic crust entrained within mantle plumes. Geophys. Res. Lett. 25 (1998), 1561–1564, 10.1029/98GL01230.
109. Zolotuhin, V.V., Vilenskii, A.M., Dyuzhikov, O.A., Basalts of the Siberian Platform: peculiarities of geology, composition and genesis of the permo-triassic effusives. Nauka, Novosibirsk, 1986 (245 pp. (in Russian)).
110. Zolotukhin, V.V., Al'Mukhamedov, A.I., Basalts of the Siberian platform: occurrence conditions, chemical composition, formation mechanism. 803, 1991, Trudy Instituta Geologii i Geofi ziki, Novosibirsk, 7–39 (in Russian).