Инд. авторы: Golitsyna Z.F., Banushkina S.V., Surkov N.V.
Заглавие: Comparison of the compositions of crystalline aluminosilicate rocks and their minerals in a planar triangular projection
Библ. ссылка: Golitsyna Z.F., Banushkina S.V., Surkov N.V. Comparison of the compositions of crystalline aluminosilicate rocks and their minerals in a planar triangular projection // Russian Geology and Geophysics. - 2018. - Vol.59. - Iss. 3. - P.257-267. - ISSN 1068-7971. - EISSN 1878-030X.
Идентиф-ры: DOI: 10.1016/j.rgg.2018.03.004; РИНЦ: 35495686; SCOPUS: 2-s2.0-85044008657; WoS: 000427812600004;
Реферат: eng: The problem of comparison of the composition of crystalline rocks with the composition of the constituent minerals of these rocks is considered. It is proposed to present the composition of rocks and the compositions of the constituent minerals in the form of a triangle on the plane. The experience of presentation of compositions in phase diagrams was taken as a basis for the construction. Analysis of the crystallochemical characteristics of clinopyroxenes and garnets has shown that three parameters are enough for depicting the compositions of these and other minerals. For this purpose, similar composition components of rocks and their minerals are summarized in molecular proportions and are plotted on the triangle DO-1/2(R2O3)-XO2, where DO = (MgO + CaO + FeO + MnO + NiO +...) + 1/4(Na2O + Al2O3) + 1/4(K2O + Al2O3), 1/2(R2O3) = 1/2(Al2O3 + Fe2O3 + Cr2O3 +...) -(1/4(Na2O + Al2O3) + 1/4(K2O + Al2O3)), and XO2 = SiO2 + TiO2. The compositions of minerals are expressed as the sums of their components: Ol = Fo + Fa + Lar + Neph +..., Px = Di + En + Wol + Ged + Gip + Jd + Eg +..., Ga = Pyr + Gross + Alm + Spe + Ski + Knr + Mj +..., etc. A step-by-step calculation algorithm is proposed, which permits evaluation of the contents of bi- and trivalent iron during probe microanalyses of garnets and pyroxenes. Comparison of the compositions of deep-seated rocks and their minerals shows their good consistency. The proposed schematic projection permits a visual comparison of the compositions of rocks with low contents of carbonates and water, from ultrabasic (e.g., dunites) to acid (e.g., granites) ones. (C) 2018, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
Ключевые слова: GPA; KBAR; GARNET; DIOPSIDE; JOIN; PYROXENE; SYSTEM; HIGH-PRESSURES; PHASE-RELATIONS; composition triangle; phase composition; formula factor; molecular proportion; garnet; clinopyroxene; phase diagram; mineral composition; rock composition; MICROPROBE ANALYSES;
Издано: 2018
Физ. хар-ка: с.257-267
Цитирование: 1. Akaogi, M., Akimoto, S., Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12-Mg3AhSi3O12 and Fe4Si4O12-Fe3AhSi3O12 at high pressures and temperatures. Phys. Earth Planet. Inter. 15:1 (1977), 90–106.
2. Biggar, G.M., Calcium-poor pyroxenes: Phase relations in the system CaO-MgO-Al2O3-SiO2. Mineral. Mag. 49:350 (1985), 49–58.
3. Bragg, W.L., Claringbull, G.F., Crystal Structures of Minerals. 1965, G. Bell & Sons, London.
4. Brandelik, A., CALCMIN—an EXCEL™ Visual Basic application for calculating mineral structural formulae from electron microprobe analyses. Comput. Geosci. 35:7 (2009), 1540–1551.
5. Bulakh, A.G., Manual and Tables for the Calculation of Mineral Formulas [in Russian]. 1967, Nedra, Moscow.
6. Doroshev, A.M., Malinovskii, I.Yu., Topological analysis of the system MgO-Al2O3-SiO2, in: Experimental Mineralogical Studies (1972-1973) [in Russian]. 1974, IGiG SO AN SSSR, Novosibirsk, 81–86.
7. Droop, G.T.R., A general equation for estimating Fe3 + concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric data. Mineral. Mag. 51:3 (1987), 431–435.
8. Dymshits, A.M., Bobrov, A.V., Litasov, K.D., Shatskiy, A.F., Ohtani, E., Litvin, Yu.A., Experimental study of the pyroxene-garnet phase transition in the Na2MgSi5O12 system at pressures of 13-20 GPa: First synthesis of sodium majorite. Dokl. Earth Sci. 434:1 (2010), 1263–1266.
9. Finger, L.W., The uncertainty in the calculated ferric iron content of a microprobe analysis. Carnegie Institution Year Book 71 (1972), 600–603.
10. Gasparik, T., Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contrib. Mineral. Petrol. 102:4 (1989), 389–405.
11. Gasparik, T., Melting experiments on the enstatite-pyrope join at 80-152 kbar. J. Geophys. Res. 97:B11 (1992), 15,181–15,188.
12. Gasparik, T., Diopside-jadeite join at 16-22 GPa. Phys. Chem. Minerals 23:7 (1996), 476–486.
13. Huckenholz, H.G., Synthesis and stability of Ti-andradite. Am. J. Sci. Schairer 267-A (1969), 209–232.
14. Khanukhova, L.T., Zharikov, V.A., Ishbulatov, R.A., Litvin, Yu.A., Excess silica in high-pressure clinopyroxene solid solutions: data of experimental study of the system CaMgSi2O6-CaAl2SiO6-SiO2 at 35 kbar and 1200 °C. Dokl. Akad. Nauk SSSR 229:1 (1976), 182–184.
15. Lindsley, D.H., Pyroxene thermometry. Am. Mineral. 68:5-6 (1983), 477–493.
16. Ma, Chi, Rossman, G.R., Grossmanite, CaTi3 + AlSiO6, a new pyroxene from the Allende meteorite. Am. Mineral. 94:10 (2009), 1491–1494.
17. Nenova, P.I., “Fe23”: A computer program for calculating the number of Fe+ 2 and Fe+ 3 ions in minerals. Comput. Geosci. 23:2 (1997), 215–219.
18. Papike, J.J., Cameron, K.L., Baldwin, K., Amphiboles and pyroxenes: Characterization of other than quadrilateral components and estimates of ferric iron from microprobe data (abstract). Geol. Soc. Am., Abstr. Programs 6 (1974), 1053–1054.
19. Sepp, B., Kunzmann, Th., The stability of clinopyroxene in the system CaO-MgO-SiO2-TiO2 (CMST). Am. Mineral. 86:3 (2001), 265–270.
20. Shatskii, V.S., Zedgenizov, D.A., Ragozin, A.L., Majoritic garnets in diamonds from placers of the northeastern Siberian Platform. Dokl. Earth Sci. 432:2 (2010), 835–838.
21. Sobolev, N.V., Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle. 1977, Am. Geophys. Un, Washington, D.C.
22. Surkov, N.V., Experimental study of the stability and melting of bivariant associations in the forsterite-normative part of the system CaO-MgO-Al2O3-SiO2 in connection with the upper-mantle petrology. Materials on Genetic and Experimental Mineralogy [in Russian], 11, 1995, Izd. SO RAN, Novosibirsk, 27–43.
23. Surkov, N.V., Doroshev, A.M., Phase diagram of CaO-Al2O3-SiO2 system at pressures of up to 40 kbar. Geologiya i Geofizika (Soviet Geology and Geophysics) 39:9 (1998), 1254–1268 (1257-1272).
24. Surkov, N.V., Gartvich, Yu.G., Experimental study of phase equilibria in the pyrope-grossular join at a pressure of 30 kbar. Petrology 8:1 (2000), 84–96.
25. Surkov, N.V., Gartvich, Yu.G., Babich, Yu.V., Experimental study of the phase diagram of CaMgSi2O6-CaAl0.5Si2O6 system at 3.0 GPa. Dokl. Earth Sci. 398:7 (2004), 1038–1042.
26. Surkov, N.V., Gartvich, Yu.G., Izokh, O.P., Stability and phase relations of nonstoichiometric clinopyroxenes in the join diopside-Ca-Eskola component at high pressures. Geochem. Int. 45:6 (2007), 569–579.
27. Yagi, K., Onuma, K., Titanaugites and the join CaMgSi2O6-CaTiAl2O6. Geol. Soc. Am., Spec. Pap., 87, 1966, 189.
28. Zavaritsky, A.N., Introduction to Petrochemistry of Igneous Rocks [in Russian]. 1944, Izd. AN SSSR, Moscow.