Инд. авторы: Palyanova G.A., Murzin V.V., Zhuravkova T.V., Varlamov D.A.
Заглавие: Au-Cu-Ag mineralization in rodingites and nephritoids of the Agardag ultramafic massif (southern Tuva, Russia)
Библ. ссылка: Palyanova G.A., Murzin V.V., Zhuravkova T.V., Varlamov D.A. Au-Cu-Ag mineralization in rodingites and nephritoids of the Agardag ultramafic massif (southern Tuva, Russia) // Russian Geology and Geophysics. - 2018. - Vol.59. - Iss. 3. - P.238-256. - ISSN 1068-7971. - EISSN 1878-030X.
Идентиф-ры: DOI: 10.1016/j.rgg.2018.03.003; РИНЦ: 35535263; SCOPUS: 2-s2.0-85043983021; WoS: 000427812600003;
Реферат: eng: Gold-bearing albite-amphibole-pyroxene rodingites of the Agardag ultramafic massif (southern Tuva, Russia) are confined to the E-W striking serpentinite crush zone. A zone of gold-bearing nephritoids is localized at the contact of rodingites with serpentinites. Optical and scanning electron microscopy, electron probe microanalysis, and fluorescent, chemical, ICP MS, and X-ray phase analyses were applied to study Au-Cu-Ag mineralization in the serpentinites, rodingites, and nephritoids. Copper sulfides, chalcocite and digenite, are present in the serpentinites, whereas gold and silver minerals are absent. Copper impurity is found in antigorite, Cr-spinel, and magnetite (up to 0.1-0.3 wt.%) as well as parkerite (up to 1.2 wt.%) and millerite (up to 7.9 wt.%). A wide variety of native gold and copper minerals has been identified in the rodingites: (1) cuproauride and tetra-auricupride free of or containing silver impurities (0.1 to 1.2 wt.%); (2) electrum of composition Ag0.50-0.49Au0.50-0.51 (650-660%) intergrown with AuCu, sometimes as exsolution structures; (3) electrum of composition Ag0.70-0.64Au0.30-0.36 (440-510%), with inclusions of AuCu and copper sulfides (geerite and yarrowite); (4) high-fineness gold (750-990%) as veinlets in electrum; and (5) native copper. The composition of copper sulfides varies from chalcocite to covellite. Submicron inclusions of hessite Ag2Te were found in chalcocite. The amount of copper, gold, and silver minerals in the nephritoids is much less than that in the rodingites. The nephritoids contain chalcocite, electrum of composition Ag0.64-0.63Au0.36-0.37 (530-540%), cuproauride, and tetra-auricupride. The detected hypergene minerals are auricuzite, apachite, brochantite, high-fineness gold, native copper, and cuprite. The sequence of mineral formation in the Agardag ore occurrence has been established on the basis of mineral structures and mineral relations in the rodingites and nephritoids. It is proved that Au-Cu-Ag mineralization formed with the participation of Au- and Ag-bearing chloride-free low-sulfur carbon dioxide alkaline fluids in reducing conditions. (C) 2018, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
Ключевые слова: MINERALS; EVOLUTION; SERPENTINIZATION; ORIGIN; BEARING RODINGITES; GOLD CONCENTRATIONS; HYDROTHERMAL SYSTEMS; CARBON DIOXIDE FLUID; Agardag ultramafic massif (southern Tuva, Russia); genesis; copper sulfides; Au-Cu-Ag solid solutions; Au-Cu intermetallics; Au-bearing rodingites and nephritoids; HG SOLID-SOLUTIONS; COPPER;
Издано: 2018
Физ. хар-ка: с.238-256
Цитирование: 1. Agafonov, L.V., Mongush, A.A., Oidup, Ch.K., Composition of gold in mafic-ultramafic rock massifs of Tuva and Mongolia. The State and Exploration of the Natural Resources of Tuva and the Adjacent Central Asian Regions Geoecology of the Environment and Society [in Russian], 2004, TuvIKOPR SO RAN, Kyzyl, 27–37.
2. Ague, J.J., Fluid flow in the deep crust. Treatise Geochem. 3 (2003), 195–228.
3. Akinfiev, N.N., Zotov, A.V., Thermodynamic description of equilibria in mixed fluids (H2O-non-polar gas) over a wide range of temperature (25-700 °C) and pressure (1-5000 bars). Geochim. Cosmochim. Acta 63 (1999), 2025–2041.
4. Bach, W., Klein, F., The petrology of seafloor rodingites: Insights from geochemical reaction path modeling. Lithos 112 (2009), 103–117.
5. Berzon, R.O., Gold-Bearing Ultramafites [in Russian]. 1983, VIEMS, Moscow.
6. Chudnenko, K.V., Pal'yanova, G.A., Thermodynamic properties of solid solutions in the Ag-Au-Cu system. Russian Geology and Geophysics (Geologiya i Geofizika) 55:3 (2014), 349–360 (449-463).
7. Chudnenko, K.V., Palyanova, G.A., Thermodynamic modeling of native formation Cu-Ag-Au-Hg solid solutions. Appl. Geochem. 66 (2016), 88–100.
8. Damdinov, B.B., Zhmodik, S.M., Mironov, A.G., Ochirov, Yu.Ch., Noble-metal mineralization in rodingites of the southeastern East Sayans. Geologiya i Geofizika (Russian Geology and Geophysics) 45:5 (2004), 577–587 (536-546).
9. Einaudi, M.T., Hedenquist, J.W., Inan, E.E., Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. Simmons, S.F., Graham, I., (eds.) Volcanic, Geothermal and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth Soc. Econ. Geol. Spec. Publ., 10, 2003, 285–314.
10. Evans, B.W., Metamorphism of Alpine peridotite and serpentinite. Ann. Rev. Earth Planet. Sci. 5 (1977), 397–447.
11. Frost, B.R., Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, central Cascades, Washington. J. Petrol. 16 (1975), 272–313.
12. Frost, B.R., Beard, J.S., McCaig, A., Condliffe, E., The formation of micro-rodingites from IODP hole U1309D: key to understanding the process of serpentinization. J. Petrol. 49 (2008), 1579–1588.
13. Gorelova, N.N., Manifestation of local metasomatism and its relationship with ore mineralization in one of ultramafic massifs of the Koryak Highland. Izvestiya Vuzov. Geologiya i Razvedka 2 (1990), 73–78.
14. Grigor'ev, N.A., Distribution of Chemical Elements in the Upper Continental Crust [in Russian]. 2009, UrO RAN, Yekaterinburg.
15. Hatzipanagiotou, K., Tsikouras, B., Migiros, G., Gartzos, E., Serelis, K., Origin of rodingites in ultramafic rocks from Lesvos island (NE Aegean, Greece). Ofioliti 28 (2003), 13–23.
16. Izokh, A.E., Vladimirov, A.G., Stupakov, S.I., Magmatism in the Agardag suture zone (southeastern Tuva). Geological and Petrostruc-tural Research in Southeastern Tuva [in Russian], 1988, Nauka, Novosibirsk, 19–75.
17. Kazachenko, V.T., Miroshnichenko, N.V., Perevoznikova, E.V., Karabt-sov, A.A., Noble metal minerals in metalliferous sediments of the Triassic-Jurassic carbonaceous sequence in Sikhote Alin. Dokl. Earth Sci. 421A:6 (2008), 919–922.
18. Klein, F., Bach, W., McCollom, T.M., Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 178 (2013), 55–69.
19. Knight, J., Leitch, C.H.B., Phase relations in the system Au-Cu-Ag at low temperatures, based on natural assemblages. Can. Mineral., 39, 2001, 889905.
20. Knipe, S.W., Fleet, M.E., Gold-copper alloy minerals from the Kerr Mine, Ontario. Can. Mineral. 35 (1997), 573–586.
21. Kokh, M., Role of CO2 in the transfer of economic metals by geological fluids. Geochemistry, 2016, Universite Toulouse III Paul Sabatier https://tel.ar-chives-ouvertes.fr/tel-01274297.
22. Kolonin, G.R., Pal'yanova, G.A., Shironosova, G.P., Morgunov, K.G., Thermodynamic model for a gold-bearing high-temperature chloride- H2O-CO2 fluid. Geokhimiya 12 (1994), 1725–1734.
23. Kolonin, G.R., Pal'yanova, G.A., Shironosova, G.P., Morgunov, K.G., The influence of carbon dioxide on the internal equilibria in fluid during the formation of hydrothermal gold deposits. Geokhimiya 1 (1997), 46–57.
24. Koutsovitis, P., Magganas, A., Pomonis, P., Ntaflos, T., Subduction-re- lated rodingites from East Othris, Greece: mineral reactions and physicochemical conditions of formation. Lithos 172-173 (2013), 139–157.
25. Kudryavtseva, A.I., Kudryavtsev, V.I., Copper gold and silver gold occurrences in noble-metal mineralization of the South Tuva ultramafic rock complex. The State and Exploration of the Natural Resources of Tuva and the Adjacent Central Asian Regions Geoecology of the Environment and Society [in Russian], 2003, TuvIKOPR SO RAN, Kyzyl, 45–48.
26. Laptev, Yu.V., Pal'yanova, G.A., Experimental and thermodynamic study of silver solubility in water-chloride-carbon dioxide fluid. Geochem. Int. 39:2 (2001), 153–161.
27. Leblanc, M., Lbouabi, M., Native silver mineralization along a rodingite tectonic contact between serpentinite and quartz diorite (Bou Azzer, Morocco). Econ. Geol. 83 (1988), 1379–1391.
28. Li, X.P., Rahn, M., Bucher, K., Metamorphic processes in rodingites of the Zermatt-Saas ophiolite. Int. Geol. Rev. 46 (2004), 28–51.
29. Lowenstern, J.B., Carbon dioxide in magmas and implications for hydrothermal systems. Miner. Deposita 36 (2001), 490–502.
30. Lowentern, J.B., Mahood, G.A., Rivers, M.L., Sutton, S.R., Evidence for extreme partitioning of copper into a magmatic vapor phase. Science 252 (1991), 1405–1409.
31. Lozhechkin, M.P., New data on the chemical composition of copper gold. Dokl. Akad. Nauk SSSR 24:5 (1939), 454–457.
32. Maydagan, L., Franchini, M., Lentz, D., Pons, J., McFarlane, C., Sulfide composition and isotopic signature of the Altar Cu-Au deposit, Argentina: constraints on the evolution of the porphyry-epithermal system. Can. Mineral. 51 (2013), 813–840.
33. Murzin, V.V., Origin of fluids responsible for the formation of Au-bearing rodingites based on isotope data: Evidence from the Karabash Alpine-type ultramafic massif, the Southern Urals. Dokl. Earth Sci. 407:2 (2006), 254–257.
34. Murzin, V.V., Sazonov, V.N., Origin of AuCu mineralization in Alpine-type ultramafites. Dokl. Akad. Nauk 366:6 (1999), 797–798.
35. Murzin, V.V., Shanina, S.N., Fluid regime and origin of gold-bearing rodingites from the Karabash Alpine-type ultrabasic massif, Southern Ural. Geochem. Int. 45:10 (2007), 998–1011.
36. Murzin, V.V., Sustavov, S.G., Solid-phase transformations in natural copper gold. Izv. AN SSSR. Ser. Geol. 11 (1989), 94–104.
37. Murzin, V.V., Kudryavtsev, V.I., Berzon, R.O., Sustavov, S.G., Copper gold in rodingitization zones. Geologiya Rudnykh Mestorozhdenii 29:5 (1987), 96–99.
38. Murzin, V.V., Sazonov, V.N., Varlamov, D.A., Shanina, S.N., Gold mineralization in rodingites of Alpine-type ultramafic massifs. Litosfera 1 (2006), 113–134.
39. Murzin, V.V., Varlamov, D.A., Shanina, S.N., New data on the gold-antigorite association of the Urals. Dokl. Earth Sci. 417A:9 (2007), 1436–1439.
40. Murzin, V.V., Varlamov, D.A., Ronkin, Yu.L., Shanina, S.N., Origin of Au-bearing rodingite in the Karabash Massif of Alpine-type ultramafic rocks in the Southern Urals. Geol. Ore Deposits 55:4 (2013), 278–297.
41. Murzin, V.V., Varlamov, D.A., Pal'yanova, G.A., Zhuravkova, T.V., Gold-bearing rodingites in the Agardag ultramafic massif (southern Tuva). Metallogeny of Ancient and Present-Day Oceans [in Russian], 22, 2016, IMin UrO RAN, Miass, 201–206.
42. Murzin, V.V., Chudnenko, K.V., Palyanova, G.A., Varlamov, D.A., Naumov, E.A., Pirajno, F., Physicochemical model for the genesis of Cu-Ag-Au-Hg solid solutions and intermetallics in the rodingites of the Zolotaya Gora gold deposit (Urals, Russia). Ore Geol. Rev. 93 (2018), 81–97.
43. O'Hanley, D.S., Schandl, E.S., Wicks, F.J., The origin of rodingites from Cassiar, British Columbia, and their use to estimate T and P(H2O) during serpentinization. Geochim. Cosmochim. Acta 56 (1992), 97–108.
44. Oen, I.S., Kieft, C., Nickeline with pyrrhotite and cubanite exsolutions, Ni-Co rich loellingite and an Au-Cu alloy in Cr-Ni ores from Beni- Bousera, Morocco. Neues Jahrb. Miner. Monatsh. 1 (1974), 1–8.
45. Oidup, Ch.K., Kuzhuget, K.S., Genesis of rodingites of the Agardag ultramafic massif. Ultramafic Associations of Folded Areas Issue 5: Petrochemistry, Mineralogy, and Geochemistry [in Russian], 1989, IGiG SO AN SSSR, Novosibirsk, 100–111.
46. Pal'yanova, G.A., Kolonin, G.R., Geochemical mobility of Au and Ag during hydrothermal transfer and precipitation: thermodynamic simulation. Geochem. Int. 45:8 (2007), 744–757.
47. Palandri, J.L., Reed, M.H., Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim. Cosmochim. Acta 68:5 (2004), 1115–1133.
48. Pokrovski, G.S., Borisova, A.Y., Bychkov, A.Y., Speciation and transport of metals and metalloids in geological vapors. Chapter Rev. Mineral. Geochem. 76 (2013), 165–218.
49. Pokrovskii, P.V., Murzin, V.V., Berzon, R.O., Yunikov, B.A., Mineralogy of native gold in the Zolotaya Gora deposit. Zapiski VMO 108:3 (1979), 317–326.
50. Rauchenstein-Martinek, K., Wagner, T., Walle, M., Heinrich, C.A., Gold concentrations in metamorphic fluids: A LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chem. Geol. 385 (2014), 70–83.
51. Rechkin, A.N., On a new type of gold-ore mineralization in ultrabasites. Geologiya i Geofizika (Soviet Geology and Geophysics) 15:2 (1974), 49–53 (37-40).
52. Rudashevskii, N.S., Rudashevskii, V.N., Nielsen, T.F.D., Shebanov, A.D., Alloys and intermetallic compounds of gold and copper in Au-Pd ores of the Skaergaard massif (Greenland). Zapiski RMO 143:4 (2014), 1–23.
53. Ryabchikov, I.D., Kogarko, L.N., Sazonov, A.M., Kononova, N.N., Formation of gold mineralization in ultramafic alkalic magmatic complexes. Dokl. Earth Sci. 468:2 (2016), 623–625.
54. Schandl, E.S., Mittwede, S.K., Evolution of the Acipayam (Denizli, Turkey) rodingites. Int. Geol. Rev. 43 (2001), 611–623.
55. Schandl, E.S., O'Hanley, D.S., Wicks, F.J., Rodingites in serpentinized ultramafic rocks of the Abitibi greenstone belt, Ontario. Can. Mineral. 27 (1989), 579–591.
56. Sekerin, A.P., Petrology of rodingites of the Sayan-Baikal mountainous area. Dokl. Akad. Nauk 262:1 (1982), 175–177.
57. Seyfried, W.E. Jr., Foustoukos, D.I., Fu, Q., Redox evolution and mass transfer during serpentinization; an experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at mid-ocean ridges. Geochim. Cosmochim. Acta 71 (2007), 3872–3886.
58. Spiridonov, E.M., Pletnev, P.A., Zolotaya Gora Copper Gold Deposit (Gold-Bearing Rodingites) [in Russian]. 2002, Nauchnyi Mir, Moscow.
59. Stupakov, S.I., Simonov, V.A., Peculiarities of the ultrabasic mineralogy: criteria of paleogeodynamic conditions of ophiolite formation in the Altai-Sayan fold area. Geologiya i Geofizika (Russian Geology and Geophysics) 38:4 (1997), 746–755 (787-798).
60. Tsikouras, B., Karipi, S., Rigopoulos, I., Perraki, M., Pomonis, P., Hatzi-Panagiotou, K., Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos 113 (2009), 540–554.
61. Ulrich, T., Gunther, D., Heinrich, C.A., Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399 (1999), 676–679.
62. Whitney, D.L., Evans, B.W., Abbreviations for names of rock-forming minerals. Am. Mineral. 95 (2010), 185–187.
63. Williams-Jones, A.E., Heinrich, C.A., Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol., 2005, 1287–1312 100th Anniversary Vol.
64. Williams-Jones, A.E., Migdisov, A.A., Archibald, S.M., Xiao, Z.F., Vapor-transport of ore metals. Geochem. Soc. Spec. Publ. 7 (2002), 279–305.
65. Zharikov, V.A., Pertsev, N.N., Rusinov, V.L., Callegari, E., Fettes, D.J., Metasomatism and metasomatic rocks. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. http://www.bgs.ac.uk/SCMR/docs/papers/paper_9.pdf, 2007.
66. Zheng, Y.-F., Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 57 (1993), 1079–1091.
67. Zhmodik, S.M., Mironov, A.G., Zhmodik, A.S., Gold-Concentrating Systems of Ophiolite Belts (by the Example of the Sayan-Baikal-Muya Belt) [in Russian]. 2008, Geo, Novosibirsk.