Инд. авторы: Murzin V.V., Chudnenko K.V., Palyanova G.A., Varlamov D.A., Naumov E.A., Pirajno F.
Заглавие: Physicochemical model for the genesis of Cu-Ag-Au-Hg solid solutions and intermetallics in the rodingites of the Zolotaya Gora gold deposit (Urals, Russia)T
Библ. ссылка: Murzin V.V., Chudnenko K.V., Palyanova G.A., Varlamov D.A., Naumov E.A., Pirajno F. Physicochemical model for the genesis of Cu-Ag-Au-Hg solid solutions and intermetallics in the rodingites of the Zolotaya Gora gold deposit (Urals, Russia)T // Ore Geology Reviews. - 2018. - Vol.93. - P.81-97. - ISSN 0169-1368.
Идентиф-ры: DOI: 10.1016/j.oregeorev.2017.12.018; РИНЦ: 35484313; SCOPUS: 2-s2.0-85039158998; WoS: 000427209200005;
Реферат: eng: In this contribution we examine the compositions of solid solutions and intermetallics of the system Cu-Ag-Au-Hg and the physicochemical conditions of their formation in rodingites from the Zolotaya Gora gold deposit (Southern Urals, Russia). Thermodynamic calculations, modeling the formation of mineral assemblages of rodingite and Cu-Ag-Au-Hg mineralization, were carried out using a "Selektor-C" software package. Two probable models for the genesis of Au-Ag-Cu-Hg solid solutions and Au-Cu intermetallics in rodingites are: 1) hydrothermal; the result of single-stage discharge in open space of deep-sourced gold-bearing fluid with the composition corresponding to rodingite, taking into account its interaction with host serpentinites. 2) metasomatic; deep-seated gold-bearing fluid (W) rising to the surface interacts with early formed rodingite (R) at different ratios (W/R). T and P-conditions of modeling: 450 degrees C, 3 kbar; 350 degrees C, 2 kbar; 250 degrees C, 1 kbar. Results of the calculations on the "hydrothermal" and "metasomatic" models showed different degrees of similarity of natural and theoretical model associations of rodingites. The metasomatic model is better for corresponding to real mineral compositions and mineral paragenesis in the natural Cu-Ag-Au-Hg system observed at the deposit. In this model the chlorite-garnet-pyroxene rodingite is replaced by a chlorite-rich rock with increasing W/R. In this case all gold minerals of Zolotaya Gora deposit (Au-Cu intermetallics and Au-Ag solid solutions) are formed at 250-450 degrees C. Gold-copper solid solution formed at a temperature of 450 degrees C (W/R > 10). Au-Ag-Hg solid solutions and native copper are formed only at 250 degrees C. According to the hydrothermal model native copper and AuCu3 were absent phases, but other Au-Cu intermetallics (AuCu, Au3Cu) precipitate if gold concentration in the solution is higher than 0.5 ppm. Thermodynamic calculations proved the possibility of formation of equilibrium assemblages of rodingite minerals and gold-bearing minerals with the participation of water-chloride complexing and low CO2 fluids. At a temperature < 350 degrees C the main status of gold in solution are Au(HS)(2)(-) and AuHS0, while at higher temperatures it occurs as AuOH0. Formation of Au-Cu intermetallics occurred under the effect of weak-acid hydrothermal solutions (pH = 3.5 divided by 5) with low fugacity of O-2 and S2: log f(O2) = -26 divided by -47, log f(S2) = -8 divided by -20. Both models (hydrothermal and metasomatic) explain the formation of Au-bearing rodingites and can be used for predicting potential gold-bearing rodingite targets.
Ключевые слова: SYSTEM; TEMPERATURES; OPHIOLITE COMPLEX; TRANSPORT-PROPERTIES; HIGH-PRESSURES; SOUTHERN URALS; BEARING RODINGITES; MOLAL THERMODYNAMIC PROPERTIES; Thermodynamic models; Fluid; Au-Cu intermetallics; Cu-Ag-Au-Hg solid solutions; Rodingites; Zolotaya Gore gold deposit; CARBON DIOXIDE FLUID; MINERALS;
Издано: 2018
Физ. хар-ка: с.81-97
Цитирование: 1. Akinfiev, N.N., Zotov, A.V., Thermodynamic description of chloride, hydrosulfide, and hydroxo complexes of Ag(I), Cu(I), and Au(I) at temperatures of 25–500°C and pressures of 1–2000 bars. Geochem. Int. 39 (2001), 990–1006.
2. Akinfiev, N.N., Zotov, A.V., Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0–600°C and pressures of 1–3000 bar. Geochem. Int. 48:7 (2010), 714–720.
3. Amiour, L., Mermoul, S., Hamana, D., Study of the influence of silver addition on the orderdisorder transformations in Cu-Au system. Physics Procedia 55 (2014), 30–34.
4. Bach, W., Klein, F., The petrology of seafloor rodingites: Insights from geochemical reaction path modeling. Lithos 12:1–2 (2009), 103–117.
5. Belogub, E., Novoselov, K., Melekestseva, I., Zabotina, M., Tret'yakov, G., Zaykov, V., Yuminov, A., Listvenite-related gold deposits of the South Urals (Russia): a review. Ore Geol. Rev. 85 (2017), 247–270.
6. Berzon, R.O., Gold Resource Potential of Ultramafics. 1983, VIEMS, Moscow (in Russian).
7. Bessinger, B., Apps, J.A., 2003. The hydrothermal chemistry of gold, arsenic, antimony, mercury and silver. http://repositories.cdlib.org/lbnl/LBNL-57395.
8. Breedveld, G.J.F., Prausnitz, J.M., Thermodynamic properties of supercritical fluids and their mixtures at very high pressure. AIChE J. 19 (1973), 783–796.
9. Carmichael, I.S.E., Turner, F.J., Verhoogen, J., Igneous Petrology. 1974, McGraw-Hili, New York, 739.
10. Chudnenko, K.V., Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, Applications. 2010, Academic Publishing House Geo, Novosibirsk (in Russian).
11. Chudnenko, K., Pal'yanova, G., Thermodynamic properties of Ag-Au-Hg solid solutions. Thermochim. Acta 572 (2013), 65–70.
12. Chudnenko, K., Pal'yanova, G., Thermodynamic properties of Au–Hg binary solid solution. Thermochim. Acta 566 (2013), 175–180.
13. Chudnenko, K.V., Pal'yanova, G.A., Thermodynamic properties of solid solutions in the Ag-Au-Cu system. Russ. Geol. Geophys. 55:3 (2014), 349–360.
14. Chudnenko, K.V., Palyanova, G.A., Thermodynamic modeling of native formation Cu-Ag-Au-Hg solid solutions. Appl. Geochem. 66 (2016), 88–100.
15. Chudnenko, K.V., Pal'yanova, G.A., Anisimova, G.S., Moskvitin, S.G., Ag-Au-Hg solid solutions and physicochemical models of their formation in nature (Kyuchyus deposit as an example). Appl. Geochem. 55 (2015), 138–151.
16. Coleman, R.G., Ophiolites. 1977, Springer Verlag, New York.
17. Damdinov, B.B., Zhmodik, S.M., Mironov, A.G., Ochirov, Yu.Ch., Noble-metal mineralization in rodingite of the southeastern part of the Eastern Sayan. Geol. Geophys. 45:5 (2004), 577–587.
18. Diakonov, I., Pokrovski, G., Schott, J., Castet, S., Gout, R., An experimental and computational study of sodium-aluminum complexing in crustal fluids. Geochim. Cosmochim. Acta 60 (1996), 197–211.
19. Dorogokupets, P.I., Karpov, I.K., Thermodynamics of Minerals and Mineral Equilibria. 1984, Novosibirsk, Nauka (in Russian).
20. Dubincka, E., Bylina, P., Kozlovski, A., Dorr, W., Nejbert, K., Schastok, J., Kulicki, C., U-Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chem. Geol. 203 (2004), 183–203.
21. Einaudi, M.T., Hedenquist, J.W., Inan, E.E., 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments, in: Simmons, S.F., Graham, I. (Eds.), Volcanic, geothermal and ore-forming fluids: Rulers and witnesses of processes within the Earth. Society of Economic Geologists Special Publication 10, pp. 285–314.
22. Escayola, M. P., Proenza, J. A., van Staal, C., Rogers, N. Skulski, T. 2009. The Point Rousse listvenites, Baie Verte, Newfoundland: altered ultramafic rocks with potential for gold mineralization? Newfoundland and Labrador Department of Natural Resources, Geological Survey Report 09–1: 1–12.
23. Evans, B.W., Hattori, K., Baronnet, A., Serpentinite: What, Why, Where?. Elements 9 (2013), 99–106.
24. Galuskin, E., Zeleg, E., 2003. The first finding of Ag-amalgamates in rodingites (Naslawice, Lower Silezia, Poland). Polskie Towarzystwo Mineralogisczne – Pracespecialne mineralogical Society of Poland – Special papers Zeszyt. 22, 48–50.
25. Gunia, P., Rodingit z serpentinowokolic Mikolajowa (masyw serpentinitow y Braszowice-Brzeznica, Dolny Slask). Geologia Sudetica 21:1 (1986), 197–229 (in Polish).
26. Helgeson, H.C., Delany, J.M., Nesbitt, H.W., Bird, D.K., Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278A (1978), 1–229.
27. Holland, T.J.B., Powell, R., An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16:3 (1998), 309–343.
28. Johnson, J.W., Oelkers, E.H., Helgeson, H.C., SUPCRT92: software package for calculating the standard molal thermodynamic properties of mineral, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C. Comput. Geosci. 18 (1992), 899–947.
29. Karpov, I.K., Chudnenko, K.V., Kulik, D.A., Modeling chemical mass-transfer in geochemical processes: thermodynamic relations, conditions of equilibria and numerical algorithms. Am. J. Sci. 297 (1997), 767–806.
30. Kazachenko, V.T., Miroshnichenko, N.V., Perevoznikova, E.V., Karabtsov, A.A., Noble metal minerals in metalliferous sediments of the triassic–jurassic carbonaceous sequence in Sikhote Alin. Dokl. Earth Sci. 421A (2008), 919–922.
31. Kissin, A.Ju., Murzin, V.V., Pritchin, M.E., Tectonic position of the gold mineralization of the Karabash Mountain (Southern Urals): Examination of mineralization of small structural forms. Litosfera 4 (2016), 1–15 (in Russian).
32. Knight, J., Leitch, C.H.B., Phase relations in the system Au-Cu-Ag at low temperatures, based on natural assemblages. Can. Miner. 39 (2001), 889–905.
33. Kolonin, G.R., Paljanova, G.A., Shironosova, G.P., Morgunov, K.G., Thermodynamic model of potential gold-bearing high-temperature water-carbon-dioxide fluid. Geochem. Int. 12 (1994), 1725–1734.
34. Kolonin, G.R., Palyanova, G.A., Shironosova, G.P., Morgunov, K.G., The effect of carbon-dioxide on internal equilibria in the fluid during the formation of hydrothermal gold deposits. Geochem. Int. 1 (1997), 46–57.
35. Koutsovitis, P., Magganas, A., Pomonis, P., Ntaflos, T., Subduction-related rodingites from East Othris, Greece: mineral reactions and physicochemical conditions of formation. Lithos 172–173 (2013), 139–157.
36. Kudryavtseva, A.I., Kudryavtsev, V.I., 2003. Occurrence of copper and silver gold in noble-metal mineralization of the Southern Tuva ultrabasic rock belt. Conditions and development of natural resources of Tuva and neighboring regions of Central Asia. Geoecology of environment and society. Kyzyl: TuvIKOPR SB RAS. 45–48 (in Russian).
37. Laptev, Y.V., Pal'yanova, G.A., Experimental and thermodynamic study of silver solubility in water-chloride-carbon dioxide fluid. Geochem. Int. 39:2 (2001), 153–161.
38. Leblanc, M., Lbouabi, M., Native silver mineralization along rodingite tectonic contact between serpentinite and quartz diorite (Bou Azzer, Morocco). Econ. Geol. 83:7 (1988), 1379–1391.
39. Lee, B.I., Kesler, M.G., Generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 21 (1975), 510–527.
40. Likhoidov, G.G., Plyusnina, L.P., Rodingites of northern Sakhalin and their physicochemical formation conditions. Tikhookeanskaya Geol. 2 (1992), 53–65 (in Russian).
41. Liu, Y., Wang, G., Wang, J., Chen, Y., Long, Z., Phase equilibria and thermodynamic functions for Ag–Hg and Cu–Hg binary systems. Thermochim. Acta 547 (2012), 83–88.
42. Lozhechkin, M.P., The Karabash deposit of cupriferous gold. Trudy UFAN SSSR 4 (1935), 35–44 (in Russian).
43. Mittwede, S.K., Schandl, E.S., Rodingites from the southern Appalachian Piedmont, South Carolina, USA. Eur. J. Mineral. 4:1 (1992), 7–16.
44. Molchanov, V.P., Plyusnina, L.P., Khanchuk, A.I., Zimin, S.S., Oktyabr'skii, R.A., Platinum- and gold-bearing rodingites of the Ust'-Dep ophiolite block (Middle Amur region). Dokl. Earth Sci. 407:2 (2006), 250–253.
45. Murzin, V.V., Origin of fluids responsible for the formation of Au-bearing rodingites based on isotope data: evidence from the Karabash Alpine-type ultramafic massif, the Southern Urals. Dokl. Earth Sci. 407:2 (2006), 254–257.
46. Murzin, V.V., Shanina, S.N., Fluid regime and origin of gold-bearing rodingites from the Karabash alpine-type ultrabasic massif, Southern Ural. Geochem. Int. 45:10 (2007), 998–1011.
47. Murzin, V.V., Sustavov, S.G., 1989. Solid-phase transformations in natural cupriferous gold. Izvestiya Akademii Nauk SSSR Seriya Geologicheskaya (11), 94-104 (in Russian).
48. Murzin, V.V., Kudryavtsev, V.I., Berzon, R.O., Sustavov, S.G., Cupriferous gold in zones of rodingitization. Geol. Ore Deposits 29:5 (1987), 96–99 (in Russian).
49. Murzin, V.V., Varlamov, D.A., Shanina, S.N., Gold mineralization in rodingites of Alpine-type ultrabasite massifs. Litosfera 1 (2006), 113–134.
50. Murzin, V.V., Varlamov, D.A., Ronkin, Yu.L., Shanina, S.N., Origin of Au-Bearing Rodingite in the Karabash Massif of Alpine-Type Ultramafic Rocks in the Southern Urals. Geol. Ore Deposits 55:4 (2013), 278–297.
51. Naumov, G.B., Ryzhenko, B.N., Khodakovsky, I.L., 1974. Handbook of Thermodynamic Data. U.S. Geol. Surv.WRD-74-001 (in Russian).
52. Normand, C., Williams-Jones, A.E., Physicochemical conditions and timing of rodingite formation: evidence from rodingite-hosted fluid inclusions in the JM Asbestos mine, Asbestos, Québec. Geochem. Trans. 8:11 (2007), 1–19.
53. Novgorodova, M.I., Tsepin, A.I., Kudrevich, I.M., Vyal'sov, L.N., 1977. New data on crystal chemistry and properties of natural intermetallic compounds in the copper-gold system. Zapiski Vsesojuznogo Mineralogicheskogo Obschestva106 (5), 540–552 (in Russian).
54. O'Hanley, D.S., Schandl, E.S., Wicks, F.J., The origin of rodingites from Cassiar British Columbia, and their use to estimate T and P(H2O) during serpentinization. Geochim. Cosmochim. Acta 56 (1992), 97–108.
55. Oen, I.S., Kieft, C., Nickeline with pyrrhotite and cubanite exsolutions, Ni-Co rich loellingite and an Au-Cu alloy in Cr-Ni ores from Beni-Bousera, Morocco. Neues Jahrbuch für Mineralogie/Monatshefte 1 (1974), 1–8.
56. Pal'yanova, G.A., Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications. Chem. Geol. 255 (2008), 399–413.
57. Palandri, J.L., Reed, M.H., Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim. Cosmochim. Acta 68 (2004), 1115–1133.
58. Perelyaev, A.P., Zolotaya Gora deposit. Ivanov, A.A., Rozkov, I.S., (eds.) 200 Years of Gold Industry in the Urals, 1948, Ural Branch of SSSR Academy of Science, Sverdlovsk, 285–295 (in Russian).
59. Pirajno, F., Hydrothermal Mineral Deposits. 1992, Springer, Heidelberg, 709.
60. Plyusnina, L.P., Likhoidov, G.G., Zaraisky, G.P., Physicochemical formation conditions of rodingite from experimental data. Petrologiya 1:5 (1993), 557–568.
61. Plyusnina, L.P., Likhoidov, G.G., Molchanov, V.P., Shcheka, Zh.A., Modeling of gold mass transfer during the listvanitization and rodingitization using the example of the Ust-Dep ophiolite complex in the Upper Amur territory. Russ. J. Pac. Geol. 1:5 (2007), 464–472.
62. Pokrovski, G.S., Akinfiev, N.N., Borisova, A.Y., Zotov, A.V., Kouzmanov, K., 2014. Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling. In book gold-transporting hydrothermal fluids in the earth's crust. Geological Society Special Publications 402, London, 9–70.
63. Pokrovskii, V.A., Helgeson, H.C., Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: the system Al2O3-H2O-NaCl. Am. J. Sci. 295 (1995), 1255–1342.
64. Pokrovsky, P.V., Murzin, V.V., Berzon, R.O., Yunikov, B.A., Mineralogy of native gold at the Zolotaya Gora deposit. Zapiski Vsesojuznogo Mineralogicheskogo Obshestva 108:3 (1979), 317–326 (in Russian).
65. Puchkov, V.N., Geology of the Urals and Cis-Urals (Actual Problems of Stratigraphy, Tectonics, Geodinamics and Metallogeny). 2010, DesignPoligraphService, Ufa, 280 (in Russian).
66. Puchkov, V.N., General features relating to the occurrence of mineral deposits in the Urals: What, where, when and why. Ore Geol. Rev. 85 (2017), 4–29.
67. Rakhov, E.V., Behavior of aluminum in chloritization zones in ultramafic rocks, in Yearbook-2004, Yekaterinburg: Inst. Geol. Geochem., Ural Branch. Russ. Acad. Sci., 2005, 206–211 (in Russian).
68. Rauchenstein-Martinek, K., Wagner, T., Wälle, M., Heinrich, C.A., Gold concentrations in metamorphic fluids: A LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chem. Geol. 385 (2014), 70–83.
69. Rechkin, A.N., A new type of gold mineralization in ultramafic rocks. Geol. Geophys. 15:2 (1974), 49–53.
70. Reid, R.C., Prausnitz, J.M., Sherwood, T.K., The Properties of Gases and Liquids. 1977, McGraw-Hill Book Company, New York.
71. Robie, R.A., Hemingway, B.S., Thermodynamic Properties of Minerals and related Substances at 298.15 K and 1 bar (105Pascals) Pressure and at Higher Temperatures. U.S. Geol. Survey Bull. 2131. 1995, United States government printing office, Washington.
72. Sazonov, V.N., Gold-productive Metasomatic Rocks in Mobile Belts: Geodynamic Settings and PTX Parameters of their Formation and Implications for Forecasting. 1998, UGGGA, Yekaterinburg (in Russian).
73. Schandl, E.S., Mittwede, S.K., Evolution of acipayam (Denizli, Turkey) rodingites. Int. Geol. Rev. 43:7 (2001), 611–623.
74. Seravkin, I.B., Znamenskii, S.M., Kosarev, A.M., The main ural fault in the south Urals: structure and the main evolution phases. Geotectonics 3 (2003), 42–64.
75. Shandl, E.S., O'Hanley, D.S., Wicks, F.J., Fluid inclusions in rodingite: a geothermometer for serpentinization. Econ. Geol. 85 (1990), 1273–1276.
76. Shock, E.L., Helgeson, H.C., Sverjensky, D.A., Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53 (1989), 2157–2183.
77. Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A., Inorganic species in geologic fluids: Correlation among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61 (1997), 907–950.
78. Snachyov, A.V., Kuznetsov, N.S., Snachyov, V.I., The Chernoe ozero gold occurrence in carbonaceous deposits of the ophiolite association: The first object of such a type in the Soutern Urals. Dokl. Earth Sci. 439:1 (2011), 906–908 (in Russian).
79. Spiridonov, E.M., Pletnev, P.A., Zolotaya Gora Deposit of Cupriferous Gold, Moscow. Systems. 2002, Nauka, Moscow (in Russian).
80. Sverjensky, D.A., Shock, E.L., Helgeson, H.C., Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim. Cosmochim. Acta 61 (1997), 1359–1412.
81. Tagirov, B.R., Baranova, N.N., Zotov, A.V., Schott, J., Bannykh, L.N., Experimental determination of the stabilities of Au2S(cr) at 25°C and Au(HS)2- at 25–250°C. Geochim. Cosmochim. Acta 70 (2006), 3689–3701.
82. Tanger, J.C., Helgeson, H.C., Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for standard partial molal properties of ions and electrolytes. Am. J. Sci. 288 (1988), 19–98.
83. Tsikouras, B., Karipi, S., Rigopoulos, I., Perraki, M., Pomonis, P., Hatzipanagiotou, K., Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos 113:3–4 (2009), 540–554.
84. Vallis, F., Scambelluri, M., Redistribution of high-pressure fluids during retrograde metamorphism of eclogite-facies rocks (Voltri Massif, Italian Western Alps). Lithos 39 (1996), 81–92.
85. Vol, A.E., Kagan, I.K., Structure and Properties of Binary Metal. 1976, Nauka, Moscow.
86. Walas, S.M., Phase Equilibria in Chemical Engineering. 1985, Butterworth Publ, Boston.
87. Williams, G.J. 1974. Economic geology of New Zealand. The Australasian Institute of Mining and Metallurgy, Monograph No. 4, pp. 490.
88. Zhmodik, S.M., Mironov, A.G., Derevenets, V.G., et al. A new type of tin-(mercury)-gold-PGE ore mineralization in the Eastern Sayan Range. Dokl. Earth Sci. 361:6 (1998), 782–785.
89. Zhmodik, S.M., Mironov, A.G., Zhmodik, A.S., Gold-concentrating Systems of Ophiolite Belts (by the Example of the Sayan-Baikal-Muya belt). 2008, Academic publishing House Geo, Novosibirsk (in Russian).
90. Zoheir, B., Lehmann, B., Listevenite-lode association at the Barramiya gold mine, Eastern Desert, Egypt. Ore Geol. Rev. 39 (2011), 101–115.