Инд. авторы: Chepurov A., Dereppe J.M., Turkin A., Lin V.
Заглавие: From subcalcic pyropes to uvarovites: experimental crystallization of Cr-rich garnets in ultramafic systems with presence of Ca-bearing hydrous fluid
Библ. ссылка: Chepurov A., Dereppe J.M., Turkin A., Lin V. From subcalcic pyropes to uvarovites: experimental crystallization of Cr-rich garnets in ultramafic systems with presence of Ca-bearing hydrous fluid // NEUES JAHRBUCH FUR MINERALOGIE-ABHANDLUNGEN. - 2018. - Vol.195. - Iss. 1. - P.65-78. - ISSN 0077-7757.
Идентиф-ры: DOI: 10.1127/njma/2018/0084; РИНЦ: 35514934; SCOPUS: 2-s2.0-85041900592; WoS: 000427023000005;
Реферат: eng: Chromium-rich garnets found as inclusions in diamonds and in mantle xenoliths have specific variations of their CaO content. The low-Ca varieties are subcalcic pyropes in clinopyroxene-free harzburgites and pyropic garnets in lherzolites, while Ca rich uvarovitic garnets occur in wehrlites. The variation in CaO of Cr-rich garnets results from early partial melting and subsequent metamorphic and metasomatic processes. A hydrous fluid is one endmember of possible metasomatic agents transporting different geochemical components in nature. We try to establish here its role in processes of formation of Cr-rich garnets. This work presents results of experiments aimed at the crystallization of Cr-rich garnets with wide variations of CaO and Cr2O3 in ultramafic system during the interaction of natural antigorite, chromite and corundum with a Ca-bearing hydrous fluid. The experiments were carried out using a multi-anvil high pressure apparatus BARS at a pressure of 5 GPa and a temperature of 1300 degrees C. Starting materials were natural serpentine, chromite and corundum. At the P-T conditions of the experiments serpentine decomposes into a harzburgite paragenesis and a hydrous fluid. CaO was placed separately from the sample modelling a metasomatic Ca-source. in the experiments crystallization of Cr-rich pyropic garnets (6-12 wt.% Cr2O3 and 0.1-6 wt.% CaO) and uvarovitic garnets (14-21 wt.% Cr2O3 and 13-24 wt.% CaO) occurred, showing a trend from low-Ca pyrope varieties of harzburgitic association to Ca-rich uvarovitic garnets of wehrlites. Our results demonstrate that a hydrous fluid can play a significant role for the crystallization of Cr-rich garnets.
Ключевые слова: CONSTRAINTS; INCLUSIONS; DIAMONDS; RE-OS; SOUTH-AFRICA; HIGH-PRESSURE; PERIDOTITE XENOLITHS; METASOMATIC PROCESSES; experimental petrology; diamond; high pressure; serpentine; chromite; uvarovitic garnet; subcalcic garnet; LITHOSPHERIC MANTLE; KIMBERLITE;
Издано: 2018
Физ. хар-ка: с.65-78
Цитирование: 1. AGASHEV, A. M., IONOV, D. A., POKHILENKO, N. P., GOLOVIN, A. V., CHEREPANOVA, Y. & SHARYGIN, I. S. (2013): Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. - Lithos 160-161:201-215.
2. BREY, G., BRICE, W. R., ELLIS, D. J., GREEN, D. H., HARRIS, K. L. & RYABCHIKOV, I. D. (1983): Pyroxene-carbonate actions in the upper mantle. - Earth Planet. Sci. Lett. 62:63-74.
3. BULATOV, V., BREY, G. P. & FOLEY, S. F. (1991): Origin of low-Ca, high-Cr garnets by recrystallization of low-pressure harzburgites. - 5th Int. Kimberlite Conf., Araxa, Ext. Abstr., CPRM Spec., 29-31.
4. CHEPUROV, A. A., TÜRKIN, A. I. & DEREPPE, J. M. (2016): Interaction of serpentine and chromite as a possible formation mechanism of subcalcic chromium garnet in the upper mantle: an experimental study. - Eur. J. Mineral. 28(2):329-336.
5. CHEPUROV, A. I., TOMILENKO, A. A., ZHIMULEV, E. I., SONIN, V. M., CHEPUROV, A. A., KOVYAZIN, S. V., TIMINA, T. Y. & SURKOV, N. V. (2012): The conservation of an aqueous fluid in inclusions in minerals and their interstices at high pressures and temperatures during the decomposition of antigorite. - Russ. Geol. Geophys. 53(3):234-246.
6. CHEPUROV, A. I., TOMILENKO, A. A., ZHIMULEV, E. I., SONIN, V. M., CHEPUROV, A. A., SURKOV, N. V. & KOVYAZIN, S. V. (2010): Problem of water in the upper mantle: antigorite breakdown. - Dokl. Earth Sci. 434(1):1275-1278.
7. CHEPUROV, A. I., SONIN, V. M., TYCHKOV, N. S. & KOULAKOV, I. Y. (2015): Experimental estimate of the actual infiltration (migration) of volatilities (H2O + CO2) in rocks of the mantle wedge. - Dokl. Earth Sci. 464(1):932-935.
8. DONNELLY, C. L., STACHEL, T., CREIGHTON, S., MUEHLENBACHS, K. & WHITEFORD, S. (2007): Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest territories, Canada. - Lithos 94(1-4):160-176.
9. GRIFFIN, W. L., SHEE, S. R., RYAN, C. G., WIN, T. T. & WYATT, B. A. (1999): Harzburgite to lher-zolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. - Contrib. Mineral. Petrol. 134:232-250.
10. GIRNIS, A. V. & BREY, G. P. (1999): Garnet-spinel-olivine-orthopyroxene equilibria in the FeO-MgO-Al2O3-SiO2-Cr2O3 system: II Thermodynamic analysis. - Eur. J. Mineral. 11:619-636.
11. GRUTTER, H. S., GURNEY, J. J., MENZIES, A. H. & WINTER, F. (2004): An updated classification scheme for mantle-derived garnet, for use by diamond explorers. - Lithos 77(1-4):841-857.
12. GRUTTER, H., LATTI, D. & MENZIES, A. (2006): Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. - J. Petrol. 47(4):801-820.
13. GURNEY, J. J., HELMSTAEDT, H. H., RICHARDSON, S. H. & SHIREY, S. B. (2010): Diamonds through Time. - Econ. Geol. 105:689-712.
14. HARTE, B., WINTERBURN, P. A. & GURNEY, J. J. (1987): Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. - In: Menzies, M. A. & Hawkesworth, C. J. (eds.): Mantle metasomatism. Academic Press, London, 145-220.
15. KESSON, S. E. & RINGWOOD, A. E. (1989): Slab-mantle interactions 1. Sheared and refertilised garnet peridotite xenoliths - samples of Wadati-Benioffzones? - Chem. Geol. 78:83-96.
16. KLEIN-BENDAVID, O. & PEARSON, D. G. (2009): Origins of subcalcic garnets and their relation to diamond forming fluids - Case studies from Ekati (NWT-Canada) and Murowa (Zimbabwe). - Geochim. Cosmochim. Acta. 73:837-855.
17. KLEMME, S. (2004): The influence of Cr on the garnet-spinel transition in the Earth's mantle: experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling. - Lithos 77(1-4):639-646.
18. KUSHIRO, I. (1968): Composition of magmas formed by partial zone melting of the earth's upper mantle. - J. Geophys. Res. 7(3):619-634.
19. LITASOV, K. D., SHATSKIY, A. F. & OHTANI, E. (2013): Earth's mantle melting in the presence of C-O-H-bearing fluid. - In: Karato, S. (ed.): Physics and Chemistry of the Deep Earth. Wiley, New York, 38-65.
20. MALINOVSKY, YU. & DOROSHEV, A. M. (1974): System MgO-Al2O3-Cr2O3-SiO2 at 1200 °C and 30 GPa. - In: SOBOLEV, V S. & GODOVIKOV, A. A. (eds.): Experimental Studies in Mineralogy. IGG SO AN SSSR, Novosibirsk, 62-69.
21. MALINOVSKY, YU., DOROSHEV, A. M. & RAN, E. N. (1975): Stability of Cr-bearing garnets of the pyrope-knorringite series. - In: SOBOLEV, V. S. AND GODOVIKOV, A. A. (eds.): Experimental Studies in Mineralogy. IGG SO AN SSSR, Novosibirsk, 110-115.
22. PEARSON, D., SHIREY, S., CARLSON, R., BOYD, F. R., POKHILENKO, N. & SHIMIZU, N. (1995a): Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. - Geochim. Cosmochim. Acta 59:959-977.
23. PEARSON, D., SNYDER, G., SHIREY, S., TAYLOR, L., CARLSON, R. & SOBOLEV, N. (1995b): Archaean Re-Os age for Siberian eclogites and constraints on Archaean tectonics. - Nature 374:711-713.
24. SIMON, N. S., CARLSON, R. W., PEARSON, D. G. & DAVIES, G. R. (2007): The origin and evolution of the Kaapvaal cratonic lithospheric mantle. - J. Petrol. 48:589-625.
25. SIMON, N. S., IRVINE, G. J., DAVIES, G. R., PEARSON, D. G. & CARLSON, R. W. (2003): The origin of garnet and clinopyroxene in "depleted" Kaapvaal peridotites. - Lithos 71:289-322.
26. SIROTKINA, E. A., BOBROV, A. V., BINDI, L. & IRIFUNE, T. (2015): Phase relations and formation of chromium-rich phases in the system Mg4Si4O12-Mg3Cr2Si3O12 at 10-24 GPa and 1600 °C. - Contrib. Mineral. Petrol. 169:1-2.
27. SHIREY, S. B., CARTIGNY, P., FROST, D. J., KESHAV, S., NESTOLA, F., NIMIS, P., PEARSON, D. G., SOBOLEV, N. V. & WALTER, M. J. (2013): Diamonds and the geology of mantle carbon. - Rev. Mineral. Geochem. 355:421.
28. SOBOLEV, N. V., LAVRENT'EV, YU. G., POKHILENKO, N. P. & USOVA, L. V. (1973): Chrome-rich garnets of Yakutia and their parageneses. - Contr. Mineral. Petrol. 40(1):39-52.
29. SOBOLEV, N. V., LAVRENT'EV, YU. G., POSPELOVA, I. N. & SOBOLEV, E. V. (1969): Chrome-pyropes from Yakut diamonds. - Dokl. Akad. Nauk SSSR. 189:162-165.
30. SOKOL, A. G., KRUK, A. N., CHEBOTAREV, D. A. & PALYANOV, YU. N. (2016): Carbonatite melt-peridotite interaction at 5.5-7.0 GPa: Implications for metasomatism in lithospheric mantle. - Lithos 248:66-79.
31. STACHEL, T. & HARRIS, J. W. (1997): Diamond precipitation and mantle metasomatism - evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. - Contrib. Mineral. Petrol. 129(2-3):143-154.
32. STACHEL, T. & HARRIS, J. W. (2008): The origin of cratonic diamonds - constraints from mineral inclusions. - Ore Geol. Rev. 34:5-32.
33. STACHEL, T., VILJOEN, K. S., BREY, G. & HARRIS, J. W. (1998): Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. - Earth Planet. Sci. Lett. 159:1-12.
34. SUZUKI, A. M., YASUDA, A. & OZAWA, K. (2008): Cr and Al diffusion in chromite spinel: experimental determination and its implication for diffusion creep. - Phys. Chem. Minerals 35:433-445.
35. TOMILENKO, A. A., CHEPUROV, A. I., SONIN, V. M., BUL'BAK, T. A., ZHIMULEV, E. I., CHEPUROV, A. A., TIMINA, T. YU. & POKHILENKO, N. P. (2015): The synthesis of methane and heavier hydrocarbons in the system graphite-iron-serpentine at 2 and 4 GPa and 1200 °C. - High Temp. - High Press. 44(6):451-465.
36. TONKOV, E. YU. & PONYATOVSKY, E. G. (2004): Phase transformation of elements under high pressure. - CRC Press, Boca Raton, FL, 392 pp.
37. TÜRKIN, A. I. (2003/2004): Lead selenide as a continuous internal indicator of pressure in solid-media cells of high-pressure apparatus in the range of 4-6.8 GPa. - High Temp. - High Press. 35/36:371-376.
38. TÜRKIN, A. I. & SOBOLEV, N. V (2009): Pyrope-knorringite garnets: overview of experimental data and natural parageneses. - Russ. Geol. Geophys. 50(12):1169-1182.
39. ULMER, P. & TROMMSDORFF, V. (1995): Serpentine stability to mantle depths and subduction-related magmatism. - Science 268(5212):858-861.
40. VILJOEN, K. S., DOBBE, R., SMIT, B., THOMASSOT, E. & CARTIGNY, P (2004): Petrology and geochemistry of a diamondiferous lherzolite from the Premier diamond mine, South Africa. - Lithos 77:539-552.
41. WANG, W. & GASPARIK, T. (2001): Metasomatic clinopyroxene inclusions in diamonds from the Liaoning province China. - Geochim. Cosmochim. Acta 65(4):611-620.
42. ZOU, Y. & IRIFUNE, T. (2012): Phase relations in Mg3Cr2Si3O12 and formation of majoritic knorringite garnet at high pressure and high temperature. - J. Miner. Petrol. Sci. 107(5):197-205.