Инд. авторы: Nurmamat M., Krasovskii E.E., Ishida Y., Sumida K., Chen J.H., Yoshikawa T., Chulkov E.V., Kokh K.A., Tereshchenko O.E., Shin S., Kimura A.
Заглавие: Ultrafast dynamics of an unoccupied surface resonance state in Bi2Te2Se
Библ. ссылка: Nurmamat M., Krasovskii E.E., Ishida Y., Sumida K., Chen J.H., Yoshikawa T., Chulkov E.V., Kokh K.A., Tereshchenko O.E., Shin S., Kimura A. Ultrafast dynamics of an unoccupied surface resonance state in Bi2Te2Se // Physical Review B. - 2018. - Vol.97. - Iss. 11. - Art.115303. - ISSN 2469-9950. - EISSN 2469-9969.
Идентиф-ры: DOI: 10.1103/PhysRevB.97.115303; РИНЦ: 35482034; SCOPUS: 2-s2.0-85043982503; WoS: 000426902200004;
Реферат: eng: Electronic structure and electron dynamics in the ternary topological insulator Bi2Te2Se are studied with time- and angle-resolved photoemission spectroscopy using optical pumping. An unoccupied surface resonance split off from the bulk conduction band previously indirectly observed in scanning tunneling measurements is spectroscopically identified. Furthermore, an unoccupied topological surface state (TSS) is found, which is serendipitously located at about 1.5 eV above the occupied TSS, thereby facilitating direct optical transitions between the two surface states at h omega = 1.5 eVin an n-type topological insulator. An appreciable nonequilibrium population of the bottom of the bulk conduction band is observed for longer than 15 ps after the pump pulse. This leads to a long recovery time of the lower TSS, which is constantly populated by the electrons coming from the bulk conduction band. Our results demonstrate Bi2Te2Se to be an ideal platform for designing future optoelectronic devices based on topological insulators.
Ключевые слова: ELECTRON DYNAMICS; TOPOLOGICAL INSULATOR;
Издано: 2018
Физ. хар-ка: 115303
Цитирование: 1. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007). 10.1103/PhysRevLett.98.106803
2. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 460, 1101 (2009). 10.1038/nature08234
3. P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Nature 460, 1106 (2009). 10.1038/nature08308
4. H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov, Y. S. Hor, R. J. Cava, and A. Yazdani, Nat. Phys. 7, 939 (2011). 10.1038/nphys2108
5. M. Z. Hasan and J. E. Moore, Annu. Rev. Condens. Matter Phys. 2, 55 (2011). 10.1146/annurev-conmatphys-062910-140432
6. T. Okuda and A. Kimura, J. Phys. Soc. Jpn. 82, 021002 (2013). 10.7566/JPSJ.82.021002
7. J. A. Sobota, S. Yang, J. G. Analytis, Y. L. Chen, I. R. Fisher, P. S. Kirchmann, and Z. X. Shen, Phys. Rev. Lett. 108, 117403 (2012). 10.1103/PhysRevLett.108.117403
8. D. Niesner, Th. Fauster, S. V. Eremeev, T. V. Menshchikova, Y. M. Koroteev, A. P. Protogenov, E. V. Chulkov, O. E. Tereshchenko, K. A. Kokh, O. Alekperov, A. Nadjafov, and N. Mamedov, Phys. Rev. B 86, 205403 (2012). 10.1103/PhysRevB.86.205403
9. Y. H. Wang, D. Hsieh, E. J. Sie, H. Steinberg, D. R. Gardner, Y. S. Lee, P. Jarillo-Herrero, and N. Gedik, Phys. Rev. Lett. 109, 127401 (2012). 10.1103/PhysRevLett.109.127401
10. M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi. Nano Lett. 12, 3532 (2012). 10.1021/nl301035x
11. J. A. Sobota, S. L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W. Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z. X. Shen, Phys. Rev. Lett. 111, 136802 (2013). 10.1103/PhysRevLett.111.136802
12. J. A. Sobota, S. L. Yang, D. Leuenberger, A. F. Kemper, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and Z. X. Shen, J. Electron Spectrosc. Relat. Phenom. 195, 249 (2014). 10.1016/j.elspec.2014.01.005
13. D. Niesner, S. Otto, Th. Fauster, E. V. Chulkov, S. V. Eremeev, O. E. Tereshchenko, and K. A. Kokh, J. Electron Spectrosc. Relat. Phenom. 195, 258 (2014). 10.1016/j.elspec.2014.03.013
14. M. Neupane, S. Y. Xu, Y. Ishida, S. Jia, B. M. Fregoso, C. Liu, I. Belopolski, G. Bian, N. Alidoust, T. Durakiewicz, V. Galitski, S. Shin, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 115, 116801 (2015). 10.1103/PhysRevLett.115.116801
15. S.Y. Zhu, Y. Ishida, K. Kuroda, K. Sumida, M. Ye, J. J. Wang, H. Pan, M. Taniguchi, S. Qiao, S. Shin, and A. Kimura, Sci. Rep. 5, 13213 (2015). 10.1038/srep13213
16. D. Niesner, S. Otto, V. Hermann, Th. Fauster, T. V. Menshchikova, S. V. Eremeev, Z. S. Aliev, I. R. Amiraslanov, M. B. Babanly, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 89, 081404 (R) (2014). 10.1103/PhysRevB.89.081404
17. M. Nurmamat, E. E. Krasovskii, K. Kuroda, M. Ye, K. Miyamoto, M. Nakatake, T. Okuda, H. Namatame, M. Taniguchi, E. V. Chulkov, K. A. Kokh, O. E. Tereshchenko, and A. Kimura, Phys. Rev. B 88, 081301 (R) (2013). 10.1103/PhysRevB.88.081301
18. C. Cacho, A. Crepaldi, M. Battiato, J. Braun, F. Cilento, M. Zacchigna, M. C. Richter, O. Heckmann, E. Springate, Y. Liu, S. S. Dhesi, H. Berger, Ph. Bugnon, K. Held, M. Grioni, H. Ebert, K. Hricovini, J. Minár, and F. Parmigiani, Phys. Rev. Lett. 114, 097401 (2015). 10.1103/PhysRevLett.114.097401
19. C. Jozwiak, J. A. Sobota, K. Gotlieb, A. F. Kemper, C. R. Rotundu, R. J. Birgeneau, Z. Hussain, D. H. Lee, Z. X. Shen, and A. Lanzara, Nat. Commun. 7, 13143 (2016). 10.1038/ncomms13143
20. J. W. Mclver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Nat. Nanotechnol. 7, 96 (2012). 10.1038/nnano.2011.214
21. J. Xiong, A. C. Petersen, D. X. Qu, Y. S. Hor, R. J. Cava, and N. P. Ong, Physica E 44, 917 (2012). 10.1016/j.physe.2011.09.011
22. J. G. Checkelsky, Y. S. Hor, M. H. Liu, D. X. Qu, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 103, 246601 (2009). 10.1103/PhysRevLett.103.246601
23. J. G. Analytis, J. H. Chu, Y. L. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B 81, 205407 (2010). 10.1103/PhysRevB.81.205407
24. G. Wang, X. G. Zhu, Y. Y. Sun, Y. Y. Li, T. Zhang, J. Wen, X. Chen, K. He, L. L. Wang, X. C. Ma, J. F. Jia, S. B. Zhang, and Q. K. Xue, Adv. Mater. 23, 2929 (2011). 10.1002/adma.201100678
25. K. A. Kokh, B. G. Nenashev, A. E. Kokh, and G. Y. Shvedenkov, J. Cryst. Growth 275, e2129 (2005). 10.1016/j.jcrysgro.2004.11.299
26. Y. Ishida, T. Togashi, K. Yamamoto, M. Tanaka, T. Kiss, T. Otsu, Y. Kobayashi, and S. Shin, Rev. Sci. Instrum. 85, 123904 (2014). 10.1063/1.4903788
27. Self-consistent calculations within the local density approximation were performed with the full-potential augmented plane wave method described in E. E. Krasovskii, F. Starrost, and W. Schattke, Phys. Rev. B 59, 10504 (1999). 10.1103/PhysRevB.59.10504