Инд. авторы: Stavrou E., Yao Y.S., Goncharov A.F., Lobanov S.S., Zaug J.M., Liu H.Y., Greenberg E., Prakapenka V.B.
Заглавие: Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth's Core Thermodynamic Conditions
Библ. ссылка: Stavrou E., Yao Y.S., Goncharov A.F., Lobanov S.S., Zaug J.M., Liu H.Y., Greenberg E., Prakapenka V.B. Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth's Core Thermodynamic Conditions // Physical Review Letters. - 2018. - Vol.120. - Iss. 9. - Art.096001. - ISSN 0031-9007. - EISSN 1079-7114.
Идентиф-ры: DOI: 10.1103/PhysRevLett.120.096001; РИНЦ: 35537047; PubMed: 29547323; SCOPUS: 2-s2.0-85042920664; WoS: 000426325700007;
Реферат: eng: Using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe(Fe; Fe/Ni)(3) and XeNi3 compounds at thermodynamic conditions representative of Earth's core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. The results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
Ключевые слова: SODIUM; PROGRAM; STABILITY; 1ST-PRINCIPLES; ORIGIN; CRYSTAL-STRUCTURES; HIGH-PRESSURE; GEOCHEMISTRY; ALLOY;
Издано: 2018
Физ. хар-ка: 096001
Цитирование: 1. L. Zhu, H. Liu, C. J. Pickard, G. Zou, and Y. Ma, Nat. Chem. 6, 644 (2014). NCAHBB 1755-4330 10.1038/nchem.1925
2. X. Li, A. Hermann, F. Peng, J. Lv, Y. Wang, H. Wang, and Y. Ma, Sci. Rep. 5, 16675 (2015). SRCEC3 2045-2322 10.1038/srep16675
3. M.-S. Miao, X.-l. Wang, J. Brgoch, F. Spera, M. G. Jackson, G. Kresse, and H.-q. Lin, J. Am. Chem. Soc. 137, 14122 (2015). JACSAT 0002-7863 10.1021/jacs.5b08162
4. S. Zhang, H. Bi, S. Wei, J. Wang, Q. Li, and Y. Ma, J. Phys. Chem. C 119, 24996 (2015). JPCCCK 1932-7447 10.1021/acs.jpcc.5b08567
5. W. Grochala, R. Hoffmann, J. Feng, and N. W. Ashcroft, Angew. Chem., Int. Ed. Engl. 46, 3620 (2007). ACIEAY 0570-0833 10.1002/anie.200602485
6. Q. Zhu, D. Y. Jung, A. R. Oganov, C. W. Glass, C. Gatti, and A. O. Lyakhov, Nat. Chem. 5, 61 (2013). NCAHBB 1755-4330 10.1038/nchem.1497
7. G. Q. X. Dong, A. R. Oganov, Q. Z. X-F. Zhou, and H.-T. Wang, arXiv:1503.00230.
8. X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov, G. Saleh, G.-R. Qian, Q. Zhu, C. Gatti, V. L. Deringer, R. Dronskowski, X.-F. Zhou, V. B. Prakapenka, Z. Konôpková, I. A. Popov, A. I. Boldyrev, and H.-T. Wang, Nat. Chem. 9, 440 (2017). NCAHBB 1755-4330 10.1038/nchem.2716
9. N. Dauphas, Icarus 165, 326 (2003). ICRSA5 0019-1035 10.1016/S0019-1035(03)00198-2
10. K. K. M. Lee and G. Steinle-Neumann, J. Geophys. Res. 111, B02202 (2006). JGREA2 0148-0227 10.1029/2005JB003781
11. E. Anders and T. Owen, Science 198, 453 (1977). SCIEAS 0036-8075 10.1126/science.198.4316.453
12. S. S. Shcheka and H. Keppler, Nature (London) 490, 531 (2012). NATUAS 0028-0836 10.1038/nature11506
13. C. Sanloup, S. A. Bonev, M. Hochlaf, and H. E. Maynard-Casely, Phys. Rev. Lett. 110, 265501 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.265501
14. C. Sanloup, B. C. Schmidt, E. M. C. Perez, A. Jambon, E. Gregoryanz, and M. Mezouar, Science 310, 1174 (2005). SCIEAS 0036-8075 10.1126/science.1119070
15. M. I. J. Probert, J. Phys. Condens. Matter 22, 025501 (2010). JCOMEL 0953-8984 10.1088/0953-8984/22/2/025501
16. A. Dewaele, N. Worth, C. J. Pickard, R. J. Needs, S. Pascarelli, O. Mathon, M. Mezouar, and T. Irifune, Nat. Chem. 8, 784 (2016). NCAHBB 1755-4330 10.1038/nchem.2528
17. W. A. Caldwell, J. H. Nguyen, B. G. Pfrommer, F. Mauri, S. G. Louie, and R. Jeanloz, Science 277, 930 (1997). SCIEAS 0036-8075 10.1126/science.277.5328.930
18. D. Nishio-Hamane, T. Yagi, N. Sata, T. Fujita, and T. Okada, Geophys. Res. Lett. 37, L04302 (2010). GPRLAJ 0094-8276 10.1029/2009GL041953
19. A. Dewaele, C. M. Pépin, G. Geneste, and G. Garbarino, High Press. Res. 37, 137 (2017). HPRSEL 0895-7959 10.1080/08957959.2016.1267165
20. E. Stavrou, M. J. Zaug, J. Crowhurst, S. Lobanov, A. F Goncharov, V. Prakapenka, C. Presche, Y. Yao, H. Liu, and Z. Dai, in American Geophysical Union Fall Meeting, San Francisco (2015), https://agu.confex.com/agu/fm15/meetingapp.cgi/Search/0?.
21. L. Dubrovinsky, N. Dubrovinskaia, O. Narygina, I. Kantor, A. Kuznetzov, V. B. Prakapenka, L. Vitos, B. Johansson, A. S. Mikhaylushkin, S. I. Simak, and I. A. Abrikosov, Science 316, 1880 (2007). SCIEAS 0036-8075 10.1126/science.1142105
22. W. F. Bottke, D. Nesvorny, R. E. Grimm, A. Morbidelli, and D. P. O'Brien, Nature (London) 439, 821 (2006). NATUAS 0028-0836 10.1038/nature04536
23. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.096001, which includes Refs. [24-41], for methods, the procedure followed for the identification of the Pmmn (1) phase, and supplemental Figs. S1-S8.
24. C. Prescher and V. B. Prakapenka, High Press. Res. 35, 223 (2015). HPRSEL 0895-7959 10.1080/08957959.2015.1059835
25. W. Kraus and G. Nolze, J. Appl. Crystallogr. 29, 301 (1996). JACGAR 0021-8898 10.1107/S0021889895014920
26. A. C. Larson and R. B. V. Dreele, Technical Report No. LAUR 86-748, Los Alamos National Laboratory, 2000.
27. A. Boultif and D. Louër, J. Appl. Crystallogr. 37, 724 (2004). JACGAR 0021-8898 10.1107/S0021889804014876
28. V. B. Prakapenka, A. Kubo, A. Kuznetsov, A. Laskin, O. Shkurikhin, P. Dera, M. L. Rivers, and S. R. Sutton, High Press. Res. 28, 225 (2008). HPRSEL 0895-7959 10.1080/08957950802050718
29. M. Kunz, A. MacDowell, W. Caldwell, D. Cambie, R. Celestre, E. Domning, R. Duarte, A. Gleason, J. Glossinger, N. Kelez, D. Plate, T. Yu, J. Zaug, H. Padmore, R. Jeanloz, A. Alivisatos, and S. Clark, J. Synchrotron Radiat. 12, 650 (2005). JSYRES 0909-0495 10.1107/S0909049505020959
30. E. Stavrou, M. Ahart, M. F. Mahmood, and A. F. Goncharov, Sci. Rep. 3, 1290 (2013). SRCEC3 2045-2322 10.1038/srep01290
31. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). PRBMDO 0163-1829 10.1103/PhysRevB.47.558
32. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). PRBMDO 0163-1829 10.1103/PhysRevB.59.1758
33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865
34. R. Martoňák, A. Laio, and M. Parrinello, Phys. Rev. Lett. 90, 075503 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.90.075503
35. R. Martoňák, D. Donadio, A. R. Oganov, and M. Parrinello, Nat. Mater. 5, 623 (2006). NMAACR 1476-1122 10.1038/nmat1696
36. A. Fonari and S. Stauffer, vaspraman.py, https://github.com/raman-sc/VASP/, 2013.
37. B. C. Giessen and N. J. Grant, Acta Crystallogr. 17, 615 (1964). ACCRA9 0365-110X 10.1107/S0365110X64001438
38. P. Lazor, Ph.D. thesis, Uppsala University, 1994.
39. S. Merkel, A. F. Goncharov, H.-k. Mao, P. Gillet, and R. J. Hemley, Science 288, 1626 (2000). SCIEAS 0036-8075 10.1126/science.288.5471.1626
40. A. F. Goncharov, E. Gregoryanz, H. K. Mao, R. J. Hemley, N. Boctor, and E. Huang, Raman Scattering of Metals to Very High Pressures, High-Pressure Phenomena, Proceedings of the International School of Physics, Enrico Fermi Course CXLVII, edited by R. J. Hemley, M. Bernasconi, L. Ulivi, and G. Chiarotti (IOS Press, Amsterdam, 2002).
41. Y. A. Freiman, A. F. Goncharov, S. M. Tretyak, A. Grechnev, J. S. Tse, D. Errandonea, H.-k. Mao, and R. J. Hemley, Phys. Rev. B 78, 014301 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.78.014301
42. H. K. Mao, Y. Wu, L. C. Chen, J. F. Shu, and A. P. Jephcoat, J. Geophys. Res. 95, 21737 (1990). JGREA2 0148-0227 10.1029/JB095iB13p21737
43. E. Stavrou, S. Lobanov, H. Dong, A. R. Oganov, V. B. Prakapenka, Z. Konôpková, and A. F. Goncharov, Chem. Mater. 28, 6925 (2016). CMATEX 0897-4756 10.1021/acs.chemmater.6b02593
44. V. V. Struzhkin, D. Y. Kim, E. Stavrou, T. Muramatsu, H.-k. Mao, C. J. Pickard, R. J. Needs, V. B. Prakapenka, and A. F. Goncharov, Nat. Commun. 7, 12267 (2016). NCAOBW 2041-1723 10.1038/ncomms12267
45. L. V. Pourovskii, J. Mravlje, M. Ferrero, O. Parcollet, and I. A. Abrikosov, Phys. Rev. B 90, 155120 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.90.155120
46. A. P. Jephcoat, H.-k. Mao, L. W. Finger, D. E. Cox, R. J. Hemley, and C.-s. Zha, Phys. Rev. Lett. 59, 2670 (1987). PRLTAO 0031-9007 10.1103/PhysRevLett.59.2670
47. V. Ozolins, C. Wolverton, and A. Zunger, Phys. Rev. B 57, 6427 (1998). PRBMDO 0163-1829 10.1103/PhysRevB.57.6427
48. Z. W. Lu, S.-H. Wei, A. Zunger, S. Frota-Pessoa, and L. G. Ferreira, Phys. Rev. B 44, 512 (1991). PRBMDO 0163-1829 10.1103/PhysRevB.44.512
49. M. Somayazulu, P. Dera, A. F. Goncharov, S. A. Gramsch, P. Liermann, W. Yang, Z. Liu, H.-k. Mao, and R. J. Hemley, Nat. Chem. 2, 50 (2010). NCAHBB 1755-4330 10.1038/nchem.445
50. R. T. Howie, R. Turnbull, J. Binns, M. Frost, P. Dalladay-Simpson, and E. Gregoryanz, Sci. Rep. 6, 34896 (2016). SRCEC3 2045-2322 10.1038/srep34896
51. H. H. Claassen, H. Selig, and J. G. Malm, J. Am. Chem. Soc. 84, 3593 (1962). JACSAT 0002-7863 10.1021/ja00877a042
52. P. A. Agron, A. A. Mason, H. A. Levy, G. M. Begun, C. G. Jones, and D. F. Smith, Science 139, 842 (1963). SCIEAS 0036-8075 10.1126/science.139.3557.842
53. D. F. Smith, J. Am. Chem. Soc. 85, 816 (1963). JACSAT 0002-7863 10.1021/ja00889a036
54. J. Li and C. B. Agee, Nature (London) 381, 686 (1996). NATUAS 0028-0836 10.1038/381686a0