Инд. авторы: Likhanov I.I., Nozhkin A.D., Savko K.A.
Заглавие: Accretionary Tectonics of Rock Complexes in the Western Margin of the Siberian Craton
Библ. ссылка: Likhanov I.I., Nozhkin A.D., Savko K.A. Accretionary Tectonics of Rock Complexes in the Western Margin of the Siberian Craton // Geotectonics. - 2018. - Vol.52. - Iss. 1. - P.22-44. - ISSN 0016-8521. - EISSN 1556-1976.
Идентиф-ры: DOI: 10.1134/S0016852118010107; РИНЦ: 32857589; SCOPUS: 2-s2.0-85041571438; WoS: 000424343200002;
Реферат: eng: The geological, geochemical, and isotope-geochronological evidence of the events at the final stage of the Neoproterozoic history of the Yenisei Range is considered (beginning from the formation of fragments of the oceanic crust in the region and their accretion to the Siberian Craton until the postaccretionary stage of crustal tension and onset of the Caledonian orogeny). Based on an analysis of new data on the petrogeochemical composition, age, and geodynamic nature of the formation of contrasting rocks in the composition of tectonic melange of the Near-Yenisei (Prieniseiskaya) regional shear zone, we have found the chronological sequence of events that marks the early stages of the Paleoasian Ocean evolution in the zone of its junction with the Siberian Craton. These events are documented by the continental marginal, ophiolitic, and island-arc geological complexes, each of which has different geochemical features. The most ancient structures are represented by fragments of oceanic crust and island arcs from the Isakovka terrane (700-620 Ma). The age of glaucophane-schist metamorphic units that formed in the paleosubduction zone corresponds to the time interval of 640-620 Ma. The formation of high-pressure tectonites in the suture zone, about 600 Ma in age, marks the finishing stage of accretion of the Isakovka block to the western margin of the Siberian Craton. The final events in the early history of the Asian Paleoocean were related to the formation of Late Vendian riftogenic amygdaloidal basalts (572 +/- 6.5 Ma) and intrusion of postcollisional leucogranites of the Osinovka massif (550-540 Ma), which intruded earlier fragments of the oceanic crust in the Isakovka terrane. These data allow us to refine the Late Precambrian stratigraphic scheme in the northwestern Trans-Angarian part of the Yenisei Range and the evolutionary features of the Sayan-Yenisei accretionary belt. The revealed Late Neoproterozoic landmarks of the evolution of the Isakovka terrane are attributed to the terminal phase of the breakup of Rodinia, separation of the Siberian Craton, and opening of the Paleoasian Ocean.
Ключевые слова: DIAGRAM; GRANITOIDS; SUPERCONTINENT; DISCRIMINATION; MAGMATISM; PETROGENESIS; EVOLUTION; FOLD BELT; Siberian Craton; Paleoasian Ocean; Yenisei Range; Isakovka terrane; tectonic melange; geochemistry; tectonic settings; isotope dating; structures of Paleoasian Ocean; evolution; YENISEI-RIDGE; BREAKUP;
Издано: 2018
Физ. хар-ка: с.22-44
Цитирование: 1. V. A. Vernikovskii, A. E. Vernikovskaya, E. B. Sal'nikova, A. B. Kotov, A. I. Chernykh, V. P. Kovach, N. G. Berezhnaya, and S. Z. Yakovleva, "New U-Pb age data on formation of the Predivinsk terrane's paleoarc complex, Yenisei Range," Geol. Geofiz. 40 (2), 255-259 (1999).
2. V. A. Vernikovsky, A. E. Vernikovskaya, A. I. Chernykh, E. B. Sal'nikova, A. B. Kotov, V. P. Kovach, S. Z. Yakovleva, and A. M. Fedoseenko, "Porozhnaya granitoids of the Enisei Ophiolite Belt: Indicators of Neoproterozoic events on the Enisei Ridge," Dokl. Earth Sci. 381, 1043-1046 (2001).
3. N. I. Volkova and E. V. Sklyarov, "High-pressure complexes of Central Asian Fold Belt: Geologic setting, geochemistry, and geodynamic implications," Russ. Geol. Geophys. 48, 83-90 (2007).
4. N. L. Dobretsov, "Evolution of the structures in the Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Mongolian foldbelt (Paleoasian Ocean)," Geol. Geofiz. 44 (1-2), 5-27 (2003).
5. L. K. Kachevskii, Geological Map of the Yenisei Range (Krasnoyarskgeols"emka, Krasnoyarsk, 2006).
6. A. B. Kuz'michev, I. P. Paderin, and A. V. Antonov, "Late Riphean Borisikha ophiolite (Yenisei Ridge): U-Pb zircon age and tectonic setting," Russ. Geol. Geophys. 49, 883-893 (2008).
7. Legend to the Yenisei Series of the State Geological Map of Russian Federation (Second Edition), Ed. by L. K. Kachevskii (PGO Krasnoyarskgeologiya, Krasnoyarsk, 2002)
8. I. I. Likhanov, A. D. Nozhkin, V. V. Reverdatto, and P. S. Kozlov, "Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian Craton," Geotectonics 48, 371-389 (2014).
9. Acidic and Intermediate Igneous Rocks, Ed. by V. V. Yarmolyuk and V. I. Kovalenko (Nauka, Moscow, 1987)
10. G. L. Mitrofanov, T. V. Mordovskaya, and F. V. Nikol'skii, "Bulging structures in some marginal parts of the Siberian Craton," in Tectonics of the Cratonic Area (Nauka, Novosibirsk, 1988), pp. 169-173.
11. A. D. Nozhkin, N. V. Dmitrieva, I. I. Likhanov, P. A. Serov, and P. S. Kozlov, "Geochemical, isotopic, and geochronological evidence for subsynchronous island-arc magmatism and terrigenous sedimentation (Predivinsk terrane of the Yenisei Ridge)," Russ. Geol. Geophys. 57, 1570-1590 (2016).
12. A. S. Sal'nikov, Seismological Structure of the Crust in Cratons and Foldbelts from Regional Seismic Refraction Investigations (SNIIGGiMS, Novosibirsk, 2009)
13. V. V. Yarmolyuk, V. I. Kovalenko, V. P. Kovach, E. Yu. Rytsk, I. K. Kozakov, A. B. Kotov, and E. B. Sal'nikova, "Early stages of the Paleoasian ocean formation: Results of geochronological, isotopic, and geochemical investigations of Late Riphean and Vendian-Cambrian complexes in the Central Asian Foldbelt," Dokl. Earth Sci. 411, 1184-1189 (2006).
14. W. V. Boynton, "Cosmochemistry of the rare earth elements: Meteorite studies," in Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63-114.
15. J.-P. Burg and T. V. Gerya, "The role of viscous heating in Barrovian metamorphism: Thermomechanical models and application to the Lepontine Dome in the Central Alps," J. Metamorph. Geol. 23, 75-95 (2005).
16. P. A. Cawood, R. A. Strachan, S. A. Pisarevsky, D. P. Gladkochub, and J. B. Murphy, "Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles," Earth Planet. Sci. Lett. 449, 118-126 (2016).
17. M. Corsini, V. Bosse, G. Feraud, F. Demoux, and G. Crevola, "Exhumation processes during post-collisional stage in the Variscan belt revealed by detailed 40Ar/39Ar study (Tanneron Massif, SE France)," Int. J. Earth Sci. 99, 327-341 (2009).
18. G. N. Eby, "Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications," Geology 20, 641-644 (1992).
19. W. G. Ernst, "Petrogenesis of glaucophane schists," J. Petrol. 4, 1-30 (1963).
20. J. G. Fitton, A. D. Saunders, M. J. Norry, B. S. Hardarson, and R. N. Taylor, "Thermal and chemical structure of the Iceland plume," Earth Planet. Sci. Lett. 153, 197-208 (1997).
21. K. F. Fornash, M. A. Cosca, and D. L. Whitney, "Tracking the timing of subduction and exhumation using 40Ar/39Ar phengite ages in blueschist-and eclogite-facies rocks (Sivrihisar, Turkey)," Contrib. Mineral. Petrol. 171, 67 (2016).
22. D. P. Gladkochub, S. A. Pisarevsky, A. M. Stanevich, T. V. Donskaya, and A. M. Mazukabzov, "When Siberia broke up from Rodinia? Evidence from detrital zircon geochronology," in Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium 2013, Ed. by R. Veselovskiy and N. Lubnina (PERO Press, Moscow, 2013), p.31.
23. S. J. Goldstein and S. B. Jacobsen, "Nd and Sm isotopic systematics of rivers water suspended material: Implications for crustal evolution," Earth Planet. Sci. Lett. 87, 249-265 (1988).
24. N. B. W. Harris, J. A. Pearce, and A. G. Tindle, "Geochemical characteristics of collision-zone magmatism," in Collision Tectonics, Vol. 19 of Geol. Soc. London Spec. Publ., Ed. by M. P. Cowards and A. C. Ries (London, 1986), pp. 67-81.
25. P. R. Hooper, "The Columbia river basalts," Science 215, 1463-1468 (1982).
26. S. B. Jacobsen and G. J. Wasserburg, "Sm-Nd evolution of chondrites and achondrites," Earth Planet. Sci. Lett. 67, 137-150 (1984).
27. A. N. Larionov, V. A. Andreichev, and D. G. Gee, "The Vendian alkaline igneous suite of northern Timan: Ion microprobe U-Pb zircon ages of gabbros and syenite," in The Neoproterozoic Timanide Orogen of Eastern Baltica, Vol. 30 of Geol Soc. London, Mem., Ed. by D. G. Gee and V. L. Pease (London, 2004), pp. 69-74.
28. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and V. P. Sukhorukov, "P-T-t constraints on polymetamorphic complexes of the Yenisey Ridge, East Siberia: Implications for Neoproterozoic paleocontinental reconstruction," J. Asian Earth Sci. 113, 391-410 (2015).
29. I. I. Likhanov and M. Santosh, "Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: Implications for breakup of the Rodinia supercontinent," Precambrian Res. 300, 315-331 (2017).
30. M. T. McCulloch and J. A. Gamble, "Geochemical and geodynamical constraints on subduction zone magmatism," Earth Planet. Sci. Lett. 102, 358-374 (1991).
31. M. A. Meschide, "A method of discriminating between different types of mid ocean ridge basalts and continental tholeites with Nb-Zr-Y diagram," Chem. Geol. 56, 207-218 (1986).
32. E. D. Mullen, "MnO-TiO2-P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogenesis," Earth Planet. Sci. Lett. 62, 53-62 (1983).
33. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks," J. Petrol. 25, 956-983 (1984).
34. R. L. Rudnick, "Making continental crust," Nature 378, 571-578 (1995).
35. I. Safonova, "Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs," Gondwana Res. 47, 6-27 (2016).
36. J. S. Stacey and J. D. Kramers, "Approximation of terrestrial lead isotope evolution by a two-stage model," Earth Planet. Sci. Lett. 26, 206-221 (1975).
37. S. M. Schmalholz and Y. Y. Podladchikov, "Tectonic overpressure in weak crustal-scale shear zones and implications for exhumation of high-pressure rocks," Geophys. Res. Lett. 40, 1984-1988 (2013).
38. S. S. Sun and W. F. McDonough, "Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes," in Magmatism in the Ocean Basins, Vol. 42 of Geol. Soc. London, Spec. Publ., Ed. by A. D. Saunders and M. J. Norry (London, 1989), pp. 313-345.
39. J. B. Whalen, K. L. Currie, and B. W. Chappel, "A-type granites: Geochemical characteristics and petrogenesis," Contrib. Mineral. Petrol. 95, 407-419 (1987).
40. D. L. Whitney and B. W. Evans, "Abbreviations for names of rock-forming minerals," Am. Mineral. 95, 185-187 (2010).
41. D. A. Wood, "The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province," Earth Planet. Sci. Lett. 50, 11-30 (1980).