Инд. авторы: Shikin A.M., Voroshin V.Y., Rybkin A.G., Kokh K.A., Tereshchenko O.E., Ishida Y., Kimura A.
Заглавие: Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation
Библ. ссылка: Shikin A.M., Voroshin V.Y., Rybkin A.G., Kokh K.A., Tereshchenko O.E., Ishida Y., Kimura A. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation // 2D MATERIALS. - 2018. - Vol.5. - Iss. 1. - Art.015015. - ISSN 2053-1583.
Идентиф-ры: DOI: 10.1088/2053-1583/aa928a; РИНЦ: 35501149; SCOPUS: 2-s2.0-85040099677; WoS: 000413836300001;
Реферат: eng: A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k(II)-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.
Ключевые слова: BI2SE3; SB2TE3; FERROMAGNETISM; DIRAC-FERMION; ROOM-TEMPERATURE; surface photovoltaic effect; magnetically doped topological insulators; spin-polarized currents; time-resolved photoemission spectroscopy; 2D systems; electronic and spin structure; ELECTRICAL DETECTION; TORQUE;
Издано: 2018
Физ. хар-ка: 015015
Цитирование: 1. Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
2. Qi X-L, Hughes T L and Zhang S-C 2008 Phys. Rev. B 78 195424
3. Hsieh D et al 2009 Nature 460 1101
4. Zhang H, Liu C-X, Qi X-L, Dai1 X, Fang Z and Zhang S-C 2009 Nat. Phys. 5 438
5. Moore J 2009 Nat. Phys. 5 378
6. Li C H, van 't Erve O M J, Robinson J T, Liu Y, Li L and Jonker B T 2014 Nat. Nanotechnol. 9 218
7. Fan Y et al 2014 Nat. Mater. 13 699
8. Mellnik A R et al 2014 Nature 511 449
9. Pesin D and MacDonald A H 2012 Nat. Mater. 11 409
10. Han W 2016 APL Mater. 4 032401
11. Kou X, Fan Y, Lang M, Upadhyaya P and Wang K L 2015 Solid State Commun. 215-6 34
12. Ren Z, Taskin A A, Sasaki S, Segawa K and Ando Y 2011 Phys. Rev. B 84 165311
13. Tang C S, Xia B, Zou X, Chen S, Ou H-W, Wang L, Rusydi A, Zhu J-X and Chia E E M 2013 Sci. Rep. 3 3513
14. Wang J, Lian B, Qi X-L and Zhang S-C 2015 Phys. Rev. B 92 081107
15. Chang C-Z et al 2013 Science 340 167
16. Chang C-Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S-C, Liu C, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473
17. Yu R, Zhang W, Zhang H-J, Zhang S-C, Dai X and Fang Z 2010 Science 329 61
18. Dankert A, Geurs J, Kamalakar M V, Charpentier S and Dash P 2015 Nano Lett. 15 7976
19. Mc Iver J W, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2012 Nat. Nanotechnol. 7 96
20. Ogawa N, Yoshimi R, Yasuda K, Tsukazaki A, Kawasaki M and Tokura Y 2016 Nat. Commun. 7 12246
21. Kastl C, Karnetzky C, Karl H and Holleitner A W 2015 Nat. Commun. 6 6617
22. Kastl C, Guan T, He X Y, Wu K H, Li Y Q and Holleitner A W 2012 Appl. Phys. Lett. 101 251110
23. Shikin A M, Klimovskikh I I, Filyanina M V, Rybkina A A, Pudikov D A, Kokh K A and Tereshchenko O E 2016 Phys. Solid State 58 1675
24. Shikin A M, Rybkina A A, Klimovskikh I I, Filianina M V, Kokh K A, Tereshchenko O E, Skirdkov P N, Zvezdin K A and Zvezdin A K 2016 Appl. Phys. Lett. 109 222404
25. Shikin A M, Rybkina A A, Klimovskikh I I, Tereshchenko O E, Bogomyakov A S, Kokh K A, Kimura A, Skirdkov P N, Zvezdin K A and Zvezdin A K 2017 2D Mater. 4 025055
26. Olbrich P et al 2014 Phys. Rev. Lett. 113 096601
27. Dantscher K et al 2015 Phys. Rev. B 92 165314
28. Plank H et al 2016 Phys. Rev. B 93 125434
29. Plank H, Danilov S N, Bel'kov V V, Shalygin V A, Kampmeier J, Lanius M, Mussler G, Grützmacher D and Ganichev S D 2016 J. Appl. Phys. 120 165301
30. Hosur P 2011 Phys. Rev. B 83 035309
31. Hajlaoui M et al 2014 Nat. Commun. 5 3003
32. Sobota J A, Yang S, Analytis J G, Chen Y L, Fisher I R, Kirchmann P S and Shen Z-X 2012 Phys. Rev. Lett. 108 117403
33. Crepaldi A, Ressel B, Cilento F, Zacchigna M, Grazioli C, Berger H, Bugnon P, Kern K, Grioni M and Parmigiani F 2012 Phys. Rev. B 86 205133
34. Wang Y H, Hsieh D, Sie E J, Steinberg H, Gardner D R, Lee Y S, Jarillo-Herrero P and Gedik N 2012 Phys. Rev. Lett. 109 127401
35. Neupane M et al 2015 Phys. Rev. Lett. 115 116801
36. Crepaldi A et al 2013 Phys. Rev. B 88 121404
37. Semenov Y G, Li X and Kim K W 2012 Phys. Rev. B 86 201401
38. Sanchez-Barriga J, Golias E, Varykhalov A, Braun J, Yashina L V, Schumann R, Minar J, Ebert H, Kornilov O and Rader O 2016 Phys. Rev. B 93 155426
39. Sanchez-Barriga J, Battiato M, Golias E, Varykhalov A, Yashina L V, Kornilov O and Rader O 2017 Appl. Phys. Lett. 110 141605
40. Ishida Y, Otsu T, Shimada T, Okawa M, Kobayashi Y, Iga F, Takabatake T and Shin S 2015 Sci. Rep. 5 8160
41. Kuroda K, Reimann J, Kokh K A, Tereshchenko O E, Kimura A, Güddec J and Höfer U 2017 Phys. Rev. B 95 081103
42. Kuroda K, Yaji K, Nakayama M, Harasawa A, Ishida Y, Watanabe S, Chen C-T, Kondo T, Komori F and Shin S 2016 Phys. Rev. B 94 165162
43. Kronik L and Shapira Y 1999 Sci. Rep. 37 1
44. Tanaka S, More S D, Murakami J, Itoh M, Fujii Y and Kamada M 2001 Phys. Rev. B 64 155308
45. Oka K and Aoki H 2009 Phys. Rev. B 70 081406
46. Inglot M, Dugaev V K, Sherman E Y and Barnas J 2015 Phys. Rev. B 91 195428
47. Wang Z, Li M, Yang L, Zhang Z and Gao X P A 2017 Nano Res. 10 1872
48. Yao J, Shao J, Wang Y, Zhao Z and Yang G 2015 Nanoscale 7 12535
49. Checkelsky J G, Ye J, Onose Y, Iwasa Y and Tokura Y 2012 Nat. Phys. 8 729
50. Xu S-Y et al 2012 Nat. Phys. 8 616
51. Chen Y L et al 2010 Science 329 659
52. Li B, Fan Q, Ji F, Liu Z, Pan H and Qiao S 2013 Phys. Lett. A 377 1925
53. Zhang J M, Zhu W, Zhang Y, Xiao D and Yao Y 2012 Phys. Rev. Lett. 109 266405
54. Larson P and Lambrecht W R L 2008 Phys. Rev. B 78 195207
55. Kul'bachinskii V A, Kaminskii A Y, Kindo K, Narumi Y, Suga K, Lostak P and Svanda P 2001 JETP Lett. 73 352
56. Wray L A, Xu S-Y, Xia Y Q, Hsieh D, Fedorov A V, Hor Y S, Cava R J, Bansil A, Lin H and Hasan M Z 2011 Nat. Phys. 7 32
57. Rosenberg G and Franz M 2012 Phys. Rev. B 85 195119
58. D'yakonov M I and Furman A S 1987 Sov. Phys. JETP 65 574 (http://www.jetp.ac.ru/cgi-bin/e/index/e/65/3/p574?a=list)
59. Zhu S et al 2015 Sci. Rep. 5 13213