Инд. авторы: Shatskiy A., Podborodnikov I.V., Arefiev A.V., Minin D.A., Chanyshev A.D., Litasov K.D.
Заглавие: Revision of the CaCO3-MgCO3 phase diagram at 3 and 6 GPa
Библ. ссылка: Shatskiy A., Podborodnikov I.V., Arefiev A.V., Minin D.A., Chanyshev A.D., Litasov K.D. Revision of the CaCO3-MgCO3 phase diagram at 3 and 6 GPa // American Mineralogist. - 2018. - Vol.103. - Iss. 3. - P.441-452. - ISSN 0003-004X. - EISSN 1945-3027.
Идентиф-ры: DOI: 10.2138/am-2018-6277; РИНЦ: 35520008; SCOPUS: 2-s2.0-85043274852; WoS: 000431121100011;
Реферат: eng: Subsolidus and melting relationships for the system CaCO3-MgCO3 have been reexamined using a Kawai-type multi-anvil apparatus at 3 and 6 GPa in graphite capsules. Phase boundaries were delineated according to the chemical composition of phases measured by electron microprobe in energy dispersive mode and identification of crystal phases by Raman spectroscopy. At 3 GPa, the dolomite-magnesite solvus intersects the melting loop at about 1250 degrees C, and the isothermal three-phase line so produced represents the peritectic reaction: dolomite (Ca# 43) = magnesite (Ca# 13) + liquid (Ca# 48), where Ca# = 100.Ca/(Ca+Mg). The melting loop for the CaCO3-MgCO3 join extends from 1515 degrees C (CaCO3) to 1515 degrees C (MgCO3) through a liquidus minimum at 1230 degrees C (near 53 mol% CaCO3). Starting from 1425 degrees C at = 30 mol% CaCO3 in the system, the liquid quenches to dendritic carbonate and periclase and contains rounded voids, indicating an incongruent melting reaction: MgCO3 (magnesite) = MgO (in liquid) + CO2 (fluid and/or liquid). At 6 GPa, aragonite + magnesite assemblage is stable up to 1000 degrees C. The reaction aragonite + magnesite = dolomite locates between 1000 and 1050 degrees C. The presence of dolomite splits the system into two partial binaries: aragonite + dolomite and dolomite + magnesite. The dolomite-magnesite solvus intersects the melting loop between 1400 and 1450 degrees C, and the isothermal three-phase line so produced represents the peritectic reaction: dolomite (Ca# 31) = magnesite (Ca# 21) + liquid (Ca# 57). The melting loop for the CaCO3-MgCO3 join extends from 1660 degrees C (CaCO3) to 1780 degrees C (MgCO3) through a liquidus minimum at 1400 degrees C and 62 mol% CaCO3. The compositions of carbonate crystals and melts from the experiments in the carbonated eclogite (Yaxley and Brey 2004) and peridotite (Dalton and Presnall 1998) systems are consistent with the geometry of the CaCO3-MgCO3 melting loop at 3 and 6 GPa: Ca-dolomite melt coexists with Mg-calcite in eclogite and peridotite at 3 GPa and dolomite melt coexists with magnesite in peridotite at 6 GPa.
Ключевые слова: high-pressure; magnesite; dolomite; calcite; KIMBERLITE PIPE; BEARING ECLOGITE; CaCO3-MgCO3; CARBONATED PELITES; PERIDOTITE XENOLITHS; MELTING RELATIONSHIPS; UPPER-MANTLE; MINERAL INCLUSIONS; LIQUID IMMISCIBILITY; HIGH-PRESSURE; Earth's mantle; aragonite; JOIN CACO3-MGCO3; phase relations;
Издано: 2018
Физ. хар-ка: с.441-452
Цитирование: 1. Akella, J., and Kennedy, G.C. (1971) Melting of gold, silver, and copper - Proposal for a new high-pressure calibration scale. Journal of Physical Research, 76, 4969-4977.
2. Amundsen, H.E. (1987) Evidence for liquid immiscibility in the upper mantle. Nature, 327, 692-695.
3. Bulanova, G.P., and Pavlova, L.P. (1987) Magnesite peridotite assemblage in diamond from the Mir pipe. Doklady Akademii Nauk SSSR, 295, 1452-1456.
4. Buob, A. (2003) The system CaCO3-MgCO3: Experiments and thermodinamic solid solutions at high pressure and temperature, Doctor of natural science, 109. Swiss Federal Institute of Technology, Zürich.
5. Buob, A., Luth, R.W., Schmidt, M.W., and Ulmer, P. (2006) Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature. American Mineralogist, 91, 435-440.
6. Byrnes, A.P., and Wyllie, P.J. (1981) Subsolidus and melting relations for the join CaCO3-MgCO3 at 10 kbar. Geochimica et Cosmochimica Acta, 45, 321-328.
7. Dalton, J.A., and Presnall, D.C. (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contributions to Mineralogy and Petrology, 131, 123-135.
8. Dasgupta, R., and Hirschmann, M.M. (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. American Mineralogist, 92, 370-379.
9. Dasgupta, R., Hirschmann, M.M., and Withers, A.C. (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227, 73-85.
10. Decker, D.L., Bassett, W.A., Merrill, L., Hall, H.T., and Barnett, J.D. (1972) High-pressure calibration a critical review. Journal of Physical and Chemical Reference Data, 1, 1-79.
11. Dobrzhinetskaya, L.F., Wirth, R., and Green, H.W. (2006) Nanometric inclusions of carbonates in Kokchetav diamonds from Kazakhstan: A new constraint for the depth of metamorphic diamond crystallization. Earth and Planetary Science Letters, 243, 85-93.
12. Eggler, D.H. (1978) The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kb with an analysis of melting in a peridotite-H2O-CO2 system. American Journal of Science, 278, 305-343.
13. Grassi, D., and Schmidt, M.W. (2011) The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology, 52, 765-789.
14. Haines, P. (2002) Principles of Thermal Analysis and Calorimetry. 216 p. Royal Society of Chemistry.
15. Harker, R.I., and Tuttle, O.F. (1955) Studies in the system CaO-MgO-CO2; Part 1, The thermal dissociation of calcite, dolomite and magnesite. American Journal of Science, 253, 209-224.
16. Hemingway, B.S., Bohlen, S.R., Hankins, W., Westrum, E.F., and Kuskov, O.L. (1998) Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary. American Mineralogist, 83, 409-418.
17. Hernlund, J., Leinenweber, K., Locke, D., and Tyburczy, J.A. (2006) A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. American Mineralogist, 91, 295-305.
18. Huang, W.L., and Wyllie, P.J. (1976) Melting relationships in the systems CaO-CO2 and MgO-CO2 to 33 kilobars. Geochimica et Cosmochimica Acta, 40, 129-132.
19. Ionov, D.A., Dupuy, C., O'Reilly, S.Y., Kopylova, M.G., and Genshaft, Y.S. (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth and Planetary Science Letters, 119, 283-297.
20. Ionov, D.A., O'Reilly, S.Y., Genshaft, Y.S., and Kopylova, M.G. (1996) Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence. Contributions to Mineralogy and Petrology, 125, 375-392.
21. Irving, A.J., and Wyllie, P.J. (1975) Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 to 36 kb. Geochimica et Cosmochimica Acta, 39, 35-53.
22. Katsura, T., and Ito, E. (1990) Melting and subsolidus relations in the MgSiO3-MgCO3 system at high pressures: implications to evolution of the Earth's atmosphere. Earth and Planetary Science Letters, 99, 110-117.
23. Kerrick, D.M., and Connolly, J.A.D. (2001a) Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth and Planetary Science Letters, 189, 19-29.
24. - (2001b) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature, 411, 293-296.
25. Keshav, S., Corgne, A., Gudfinnsson, G.H., Bizimis, M., McDonough, W.F., and Fei, Y. (2005) Kimberlite petrogenesis: insights from clinopyroxene-melt partitioning experiments at 6 GPa in the CaO-MgO-Al2O3-SiO2-CO2 system. Geochimica et Cosmochimica Acta, 69, 2829-2845.
26. Kiseeva, E.S., Litasov, K.D., Yaxley, G.M., Ohtani, E., and Kamenetsky, V.S. (2013) Melting phase relations of carbonated eclogite at 9-21 GPa and alkali-rich melts in the deep mantle. Journal of Petrology, DOI: 10.1093/petrology/egt023.
27. Kogarko, L., Henderson, C.M., and Pacheco, H. (1995) Primary Ca-rich carbonatite magma and carbonate-silicate-sulphide liquid immiscibility in the upper mantle. Contributions to Mineralogy and Petrology, 121, 267-274.
28. Korsakov, A.V., and Hermann, J. (2006) Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth and Planetary Science Letters, 241, 104-118.
29. Korsakov, A.V., De Gussem, K., Zhukov, V.P., Perraki, M., Vandenabeele, P., and Golovin, A.V. (2009) Aragonite-calcite-dolomite relationships in UHPM polycrystalline carbonate inclusions from the Kokchetav Massif, northern Kazakhstan. European Journal of Mineralogy, 21, 1301-1311.
30. Lavrentev, Y.G., Karmanov, N., and Usova, L. (2015) Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope? Russian Geology and Geophysics, 56, 1154-1161.
31. Li, Z., Li, J., Lange, R., Liu, J., and Militzer, B. (2017) Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle. Earth and Planetary Science Letters, 457, 395-402.
32. Litasov, K.D., and Ohtani, E. (2009) Solidus and phase relations of carbonated peridotite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2 to the lower mantle depths. Physics of the Earth and Planetary Interiors, 177, 46-58.
33. - (2010) The solidus of carbonated eclogite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32 GPa and carbonatite liquid in the deep mantle. Earth and Planetary Science Letters, 295, 115-126.
34. Luth, R.W. (2006) Experimental study of the CaMgSi2O6-CO2 system at 3-8 GPa. Contributions to Mineralogy and Petrology, 151, 141-157.
35. Meyer, H.O.A., and McCallum, M.E. (1986) Mineral inclusions in diamonds from the Sloan kimberlites, Colorado. Journal of Geology, 94, 600-612.
36. Müller, J., Koch-Müller, M., Rhede, D., Wilke, F.D., and Wirth, R. (2017) Melting relations in the system CaCO3-MgCO3 at 6 GPa. American Mineralogist, 102, 2440-2449.
37. Murakami, T., Wallis, S., Enami, M., and Kagi, H. (2008) Forearc diamond from Japan. Geology, 36, 219-222.
38. Ono, S., Kikegawa, T., and Higo, Y. (2011) In situ observation of a garnet/perovskite transition in CaGeO3. Physics and Chemistry of Minerals, 38, 735-740.
39. Phillips, D., and Harris, J.W. (1995) Geothermobarometry of diamond inclusions from the De Beers pool mines, Kimberley, South Africa. VI International Kimberlite Conference, Extended Abstr., p. 441-442, Novosibirsk, Russia.
40. Shatskiy, A., Katsura, T., Litasov, K.D., Shcherbakova, A.V., Borzdov, Y.M., Yamazaki, D., Yoneda, A., Ohtani, E., and Ito, E. (2011) High pressure generation using scaled-up Kawai-cell. Physics of the Earth and Planetary Interiors, 189, 92-108.
41. Shatskiy, A., Sharygin, I.S., Gavryushkin, P.N., Litasov, K.D., Borzdov, Y.M., Shcherbakova, A.V., Higo, Y., Funakoshi, K., Palyanov, Y.N., and Ohtani, E. (2013) The system K2CO3-MgCO3 at 6 GPa and 900-1450 °C. American Mineralogist, 98, 1593-1603.
42. Shatskiy, A., Gavryushkin, P.N., Litasov, K.D., Koroleva, O.N., Kupriyanov, I.N., Borzdov, Y.M., Sharygin, I.S., Funakoshi, K., Palyanov, Y.N., and Ohtani, E. (2015) Na-Ca carbonates synthesized under upper-mantle conditions: Raman spectroscopic and X-ray diffraction studies. European Journal of Mineralogy, 27, 175-184.
43. Shatskiy, A., Podborodnikov, I.V., Arefiev, A.V., Litasov, K.D., Chanyshev, A.D., Sharygin, I.S., Karmanov, N.S., and Ohtani, E. (2017) Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite. American Mineralogist, 102, 1934-1946.
44. Shatsky, V., Ragozin, A., Zedgenizov, D., and Mityukhin, S. (2008) Evidence for multistage evolution in a xenolith of diamond-bearing eclogite from the Udachnaya kimberlite pipe. Lithos, 105, 289-300.
45. Shatsky, V.S., Sobolev, N.V., and Vavilov, M.A. (1995) Diamond-bearing metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). In R.G. Coleman, and X. Wang, Eds., Ultrahigh Pressure Metamorphism, 427-455. Cambridge University Press.
46. Sobolev, N.V., and Shatsky, V.S. (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature, 343, 742-746.
47. Sobolev, N.V., Kaminsky, F.V., Griffin, W.L., Yefimova, E.S., Win, T.T., Ryan, C.G., and Botkunov, A.I. (1997) Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos, 39, 135-157.
48. Stachel, T., Harris, J.W., and Brey, G.P. (1998) Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contributions to Mineralogy and Petrology, 132, 34-47.
49. Suito, K., Namba, J., Horikawa, T., Taniguchi, Y., Sakurai, N., Kobayashi, M., Onodera, A., Shimomura, O., and Kikegawa, T. (2001) Phase relations of CaCO3 at high pressure and high temperature. American Mineralogist, 86, 997-1002.
50. Thomsen, T.B., and Schmidt, M.W. (2008) Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth and Planetary Science Letters, 267, 17-31.
51. Thomson, A.R., Walter, M.J., Kohn, S.C., and Brooker, R.A. (2016) Slab melting as a barrier to deep carbon subduction. Nature, 529, 76-79.
52. Wallace, M.E., and Green, D.H. (1988) An experimental determination of primary carbonatite magma composition. Nature, 335, 343-346.
53. Wang, A., Pasteris, J.D., Meyer, H.O.A., and DeleDuboi, M.L. (1996) Magnesite-bearing inclusion assemblage in natural diamond. Earth and Planetary Science Letters, 141, 293-306.
54. Wyllie, P.J., and Tuttle, O.F. (1960) The system CaO-CO2-H2O and the origin of carbonatites. Journal of Petrology, 1, 1-46.
55. Wyllie, P.J., and Huang, W. (1975) Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2. Geology, 3, 621-624.
56. - (1976) Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications. Contributions to Mineralogy and Petrology, 54, 79-107.
57. Yaxley, G.M., and Brey, G.P. (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contributions to Mineralogy and Petrology, 146, 606-619.
58. Zedgenizov, D.A., Shatskiy, A., Ragozin, A.L., Kagi, H., and Shatsky, V.S. (2014) Merwinite in diamond from São Luis, Brazil: A new mineral of the Ca-rich mantle environment. American Mineralogist, 99, 547-550.